ﻻ يوجد ملخص باللغة العربية
Data from a long time evolution experiment with Escherichia Coli and from a large study on copy number variations in subjects with european ancestry are analyzed in order to argue that mutations can be described as Levy flights in the mutation space. These Levy flights have at least two components: random single-base substitutions and large DNA rearrangements. From the data, we get estimations for the time rates of both events and the size distribution function of large rearrangements.
Animal movements have been related to optimal foraging strategies where self-similar trajectories are central. Most of the experimental studies done so far have focused mainly on fitting statistical models to data in order to test for movement patter
Cooperation among individuals has been key to sustaining societies. However, natural selection favors defection over cooperation. Cooperation can be favored when the mobility of individuals allows cooperators to form a cluster (or group). Mobility pa
Among Markovian processes, the hallmark of Levy flights is superdiffusion, or faster-than-Brownian dynamics. Here we show that Levy laws, as well as Gaussians, can also be the limit distributions of processes with long range memory that exhibit very
Let L(t) be a Levy flights process with a stability index alphain(0,2), and U be an external multi-well potential. A jump-diffusion Z satisfying a stochastic differential equation dZ(t)=-U(Z(t-))dt+sigma(t)dL(t) describes an evolution of a Levy parti
It is shown that a quantum Levy process in a box leads to a problem involving topological constraints in space, and its treatment in the framework of the path integral formalism with the Levy measure is suggested. The eigenvalue problem for the infin