ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal Control for Quantum Metrology via Pontryagins principle

345   0   0.0 ( 0 )
 نشر من قبل Chungwei Lin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum metrology comprises a set of techniques and protocols that utilize quantum features for parameter estimation which can in principle outperform any procedure based on classical physics. We formulate the quantum metrology in terms of an optimal control problem and apply Pontryagins Maximum Principle to determine the optimal protocol that maximizes the quantum Fisher information for a given evolution time. As the quantum Fisher information involves a derivative with respect to the parameter which one wants to estimate, we devise an augmented dynamical system that explicitly includes gradients of the quantum Fisher information. The necessary conditions derived from Pontryagins Maximum Principle are used to quantify the quality of the numerical solution. The proposed formalism is generalized to problems with control constraints, and can also be used to maximize the classical Fisher information for a chosen measurement.



قيم البحث

اقرأ أيضاً

We prove a duality relation and an integration by parts formula for fractional operators with a general analytical kernel. Based on these basic results, we are able to prove a new Gronwalls inequality and continuity and differentiability of solutions of control differential equations. This allow us to obtain a weak version of Pontryagins maximum principle. Moreover, our approach also allow us to consider mixed problems with both integer and fractional order operators and derive necessary optimality conditions for isoperimetric variational problems and other problems of the calculus of variations.
Experimentally achieving the precision that standard quantum metrology schemes promise is always challenging. Recently, additional controls were applied to design feasible quantum metrology schemes. However, these approaches generally does not consid er ease of implementation, raising technological barriers impeding its realization. In this paper, we circumvent this problem by applying closed-loop learning control to propose a practical controlled sequential scheme for quantum metrology. Purity loss of the probe state, which relates to quantum Fisher information, is measured efficiently as the fitness to guide the learning loop. We confirm its feasibility and certain superiorities over standard quantum metrology schemes by numerical analysis and proof-of-principle experiments in a nuclear magnetic resonance (NMR) system.
Grovers algorithm is one of the most famous algorithms which explicitly demonstrates how the quantum nature can be utilized to accelerate the searching process. In this work, Grovers quantum search problem is mapped to a time-optimal control problem. Resorting to Pontryagins Minimum Principle we find that the time-optimal solution has the bang-singular-bang structure. This structure can be derived naturally, without integrating the differential equations, using the geometric control technique where Hamiltonians in the Schrodingers equation are represented as vector fields. In view of optimal control, Grovers algorithm uses the bang-bang protocol to approximate the optimal protocol with a minimized number of bang-to-bang switchings to reduce the query complexity. Our work provides a concrete example how Pontryagins Minimum Principle is connected to quantum computation, and offers insight into how a quantum algorithm can be designed.
69 - Sisi Zhou , Liang Jiang 2019
For a generic set of Markovian noise models, the estimation precision of a parameter associated with the Hamiltonian is limited by the $1/sqrt{t}$ scaling where $t$ is the total probing time, in which case the maximal possible quantum improvement in the asymptotic limit of large $t$ is restricted to a constant factor. However, situations arise where the constant factor improvement could be significant, yet no effective quantum strategies are known. Here we propose an optimal approximate quantum error correction (AQEC) strategy asymptotically saturating the precision lower bound in the most general adaptive parameter estimation scheme where arbitrary and frequent quantum controls are allowed. We also provide an efficient numerical algorithm finding the optimal code. Finally, we consider highly-biased noise and show that using the optimal AQEC strategy, strong noises are fully corrected, while the estimation precision depends only on the strength of weak noises in the limiting case.
Entangled atomic states, such as spin squeezed states, represent a promising resource for a new generation of quantum sensors and atomic clocks. We demonstrate that optimal control techniques can be used to substantially enhance the degree of spin sq ueezing in strongly interacting many-body systems, even in the presence of noise and imperfections. Specifically, we present a protocol that is robust to noise which outperforms conventional methods. Potential experimental implementations are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا