ﻻ يوجد ملخص باللغة العربية
Grovers algorithm is one of the most famous algorithms which explicitly demonstrates how the quantum nature can be utilized to accelerate the searching process. In this work, Grovers quantum search problem is mapped to a time-optimal control problem. Resorting to Pontryagins Minimum Principle we find that the time-optimal solution has the bang-singular-bang structure. This structure can be derived naturally, without integrating the differential equations, using the geometric control technique where Hamiltonians in the Schrodingers equation are represented as vector fields. In view of optimal control, Grovers algorithm uses the bang-bang protocol to approximate the optimal protocol with a minimized number of bang-to-bang switchings to reduce the query complexity. Our work provides a concrete example how Pontryagins Minimum Principle is connected to quantum computation, and offers insight into how a quantum algorithm can be designed.
Quantum metrology comprises a set of techniques and protocols that utilize quantum features for parameter estimation which can in principle outperform any procedure based on classical physics. We formulate the quantum metrology in terms of an optimal
Grovers quantum algorithm improves any classical search algorithm. We show how random Gaussian noise at each step of the algorithm can be modelled easily because of the exact recursion formulas available for computing the quantum amplitude in Grovers
We study the entanglement content of the states employed in the Grover algorithm after the first oracle call when a few searched items are concerned. We then construct a link between these initial states and hypergraphs, which provides an illustration of their entanglement properties.
We investigate the performance of Grovers quantum search algorithm on a register which is subject to loss of the particles that carry the qubit information. Under the assumption that the basic steps of the algorithm are applied correctly on the corre
Grovers Search algorithm was a breakthrough at the time it was introduced, and its underlying procedure of amplitude amplification has been a building block of many other algorithms and patterns for extracting information encoded in quantum states. I