ترغب بنشر مسار تعليمي؟ اضغط هنا

Probe optimization for quantum metrology via closed-loop learning control

93   0   0.0 ( 0 )
 نشر من قبل Xiaodong Yang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Experimentally achieving the precision that standard quantum metrology schemes promise is always challenging. Recently, additional controls were applied to design feasible quantum metrology schemes. However, these approaches generally does not consider ease of implementation, raising technological barriers impeding its realization. In this paper, we circumvent this problem by applying closed-loop learning control to propose a practical controlled sequential scheme for quantum metrology. Purity loss of the probe state, which relates to quantum Fisher information, is measured efficiently as the fitness to guide the learning loop. We confirm its feasibility and certain superiorities over standard quantum metrology schemes by numerical analysis and proof-of-principle experiments in a nuclear magnetic resonance (NMR) system.



قيم البحث

اقرأ أيضاً

Quantum metrology comprises a set of techniques and protocols that utilize quantum features for parameter estimation which can in principle outperform any procedure based on classical physics. We formulate the quantum metrology in terms of an optimal control problem and apply Pontryagins Maximum Principle to determine the optimal protocol that maximizes the quantum Fisher information for a given evolution time. As the quantum Fisher information involves a derivative with respect to the parameter which one wants to estimate, we devise an augmented dynamical system that explicitly includes gradients of the quantum Fisher information. The necessary conditions derived from Pontryagins Maximum Principle are used to quantify the quality of the numerical solution. The proposed formalism is generalized to problems with control constraints, and can also be used to maximize the classical Fisher information for a chosen measurement.
We provide a rigorous analysis of the quantum optimal control problem in the setting of a linear combination $s(t)B+(1-s(t))C$ of two noncommuting Hamiltonians $B$ and $C$. This includes both quantum annealing (QA) and the quantum approximate optimiz ation algorithm (QAOA). The target is to minimize the energy of the final ``problem Hamiltonian $C$, for a time-dependent and bounded control schedule $s(t)in [0,1]$ and $tin mc{I}:= [0,t_f]$. It was recently shown, in a purely closed system setting, that the optimal solution to this problem is a ``bang-anneal-bang schedule, with the bangs characterized by $s(t)= 0$ and $s(t)= 1$ in finite subintervals of $mc{I}$, in particular $s(0)=0$ and $s(t_f)=1$, in contrast to the standard prescription $s(0)=1$ and $s(t_f)=0$ of quantum annealing. Here we extend this result to the open system setting, where the system is described by a density matrix rather than a pure state. This is the natural setting for experimental realizations of QA and QAOA. For finite-dimensional environments and without any approximations we identify sufficient conditions ensuring that either the bang-anneal, anneal-bang, or bang-anneal-bang schedules are optimal, and recover the optimality of $s(0)=0$ and $s(t_f)=1$. However, for infinite-dimensional environments and a system described by an adiabatic Redfield master equation we do not recover the bang-type optimal solution. In fact we can only identify conditions under which $s(t_f)=1$, and even this result is not recovered in the fully Markovian limit. The analysis, which we carry out entirely within the geometric framework of Pontryagin Maximum Principle, simplifies using the density matrix formulation compared to the state vector formulation.
Designing a high-quality control is crucial for reliable quantum computation. Among the existing approaches, closed-loop leaning control is an effective choice. Its efficiency depends on the learning algorithm employed, thus deserving algorithmic com parisons for its practical applications. Here, we assess three representative learning algorithms, including GRadient Ascent Pulse Engineering (GRAPE), improved Nelder-Mead (NMplus) and Differential Evolution (DE), by searching for high-quality control pulses to prepare the Bell state. We first implement each algorithm experimentally in a nuclear magnetic resonance system and then conduct a numerical study considering the impact of some possible significant experimental uncertainties. The experiments report the successful preparation of the high-fidelity target state with different convergence speeds by the three algorithms, and these results coincide with the numerical simulations when potential uncertainties are negligible. However, under certain significant uncertainties, these algorithms possess distinct performance with respect to their resulting precision and efficiency. This study provides insight to aid in the practical application of different closed-loop learning algorithms in realistic physical scenarios.
Quantum metrology is an important application of emerging quantum technologies. We explore whether a hybrid system of quantum sensors and quantum circuits can surpass the classical limit of sensing. In particular, we use a circuit learning approach t o search for encoder and decoder circuits that scalably improve sensitivity under given application and noise characteristics. Our approach uses a variational algorithm that can learn a quantum sensing circuit based on platform-specific control capacity, noise, and signal distribution. The quantum circuit is composed of an encoder which prepares the optimal sensing state and a decoder which gives an output distribution containing information of the signal. We optimize the full circuit to maximize the Signal-to-Noise Ratio (SNR). Furthermore, this learning algorithm can be run on real hardware scalably by using the parameter-shift rule which enables gradient evaluation on noisy quantum circuits, avoiding the exponential cost of quantum system simulation. We demonstrate a 1.69x SNR improvement over the classical limit on a 5-qubit IBM quantum computer. More notably, our algorithm overcomes the plateauing (or even decreasing) performance of existing entanglement-based protocols with increased system sizes.
We develop a general method for incentive-based programming of hybrid quantum-classical computing systems using reinforcement learning, and apply this to solve combinatorial optimization problems on both simulated and real gate-based quantum computer s. Relative to a set of randomly generated problem instances, agents trained through reinforcement learning techniques are capable of producing short quantum programs which generate high quality solutions on both types of quantum resources. We observe generalization to problems outside of the training set, as well as generalization from the simulated quantum resource to the physical quantum resource.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا