ترغب بنشر مسار تعليمي؟ اضغط هنا

Class-Incremental Learning for Wireless Device Identification in IoT

120   0   0.0 ( 0 )
 نشر من قبل Yongxin Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep Learning (DL) has been utilized pervasively in the Internet of Things (IoT). One typical application of DL in IoT is device identification from wireless signals, namely Non-cryptographic Device Identification (NDI). However, learning components in NDI systems have to evolve to adapt to operational variations, such a paradigm is termed as Incremental Learning (IL). Various IL algorithms have been proposed and many of them require dedicated space to store the increasing amount of historical data, and therefore, they are not suitable for IoT or mobile applications. However, conventional IL schemes can not provide satisfying performance when historical data are not available. In this paper, we address the IL problem in NDI from a new perspective, firstly, we provide a new metric to measure the degree of topological maturity of DNN models from the degree of conflict of class-specific fingerprints. We discover that an important cause for performance degradation in IL enabled NDI is owing to the conflict of devices fingerprints. Second, we also show that the conventional IL schemes can lead to low topological maturity of DNN models in NDI systems. Thirdly, we propose a new Channel Separation Enabled Incremental Learning (CSIL) scheme without using historical data, in which our strategy can automatically separate devices fingerprints in different learning stages and avoid potential conflict. Finally, We evaluated the effectiveness of the proposed framework using real data from ADS-B (Automatic Dependent Surveillance-Broadcast), an application of IoT in aviation. The proposed framework has the potential to be applied to accurate identification of IoT devices in a variety of IoT applications and services. Data and code available at IEEE Dataport (DOI: 10.21227/1bxc-ke87) and url{https://github.com/pcwhy/CSIL}}



قيم البحث

اقرأ أيضاً

The growing use of IoT devices in organizations has increased the number of attack vectors available to attackers due to the less secure nature of the devices. The widely adopted bring your own device (BYOD) policy which allows an employee to bring a ny IoT device into the workplace and attach it to an organizations network also increases the risk of attacks. In order to address this threat, organizations often implement security policies in which only the connection of white-listed IoT devices is permitted. To monitor adherence to such policies and protect their networks, organizations must be able to identify the IoT devices connected to their networks and, more specifically, to identify connected IoT devices that are not on the white-list (unknown devices). In this study, we applied deep learning on network traffic to automatically identify IoT devices connected to the network. In contrast to previous work, our approach does not require that complex feature engineering be applied on the network traffic, since we represent the communication behavior of IoT devices using small images built from the IoT devices network traffic payloads. In our experiments, we trained a multiclass classifier on a publicly available dataset, successfully identifying 10 different IoT devices and the traffic of smartphones and computers, with over 99% accuracy. We also trained multiclass classifiers to detect unauthorized IoT devices connected to the network, achieving over 99% overall average detection accuracy.
In class-incremental learning, a learning agent faces a stream of data with the goal of learning new classes while not forgetting previous ones. Neural networks are known to suffer under this setting, as they forget previously acquired knowledge. To address this problem, effective methods exploit past data stored in an episodic memory while expanding the final classifier nodes to accommodate the new classes. In this work, we substitute the expanding classifier with a novel fixed classifier in which a number of pre-allocated output nodes are subject to the classification loss right from the beginning of the learning phase. Contrarily to the standard expanding classifier, this allows: (a) the output nodes of future unseen classes to firstly see negative samples since the beginning of learning together with the positive samples that incrementally arrive; (b) to learn features that do not change their geometric configuration as novel classes are incorporated in the learning model. Experiments with public datasets show that the proposed approach is as effective as the expanding classifier while exhibiting novel intriguing properties of the internal feature representation that are otherwise not-existent. Our ablation study on pre-allocating a large number of classes further validates the approach.
Internet-of-Things (IoT) devices are known to be the source of many security problems, and as such, they would greatly benefit from automated management. This requires robustly identifying devices so that appropriate network security policies can be applied. We address this challenge by exploring how to accurately identify IoT devices based on their network behavior, while leveraging approaches previously proposed by other researchers. We compare the accuracy of four different previously proposed machine learning models (tree-based and neural network-based) for identifying IoT devices. We use packet trace data collected over a period of six months from a large IoT test-bed. We show that, while all models achieve high accuracy when evaluated on the same dataset as they were trained on, their accuracy degrades over time, when evaluated on data collected outside the training set. We show that on average the models accuracy degrades after a couple of weeks by up to 40 percentage points (on average between 12 and 21 percentage points). We argue that, in order to keep the models accuracy at a high level, these need to be continuously updated.
With the memory-resource-limited constraints, class-incremental learning (CIL) usually suffers from the catastrophic forgetting problem when updating the joint classification model on the arrival of newly added classes. To cope with the forgetting pr oblem, many CIL methods transfer the knowledge of old classes by preserving some exemplar samples into the size-constrained memory buffer. To utilize the memory buffer more efficiently, we propose to keep more auxiliary low-fidelity exemplar samples rather than the original real high-fidelity exemplar samples. Such a memory-efficient exemplar preserving scheme makes the old-class knowledge transfer more effective. However, the low-fidelity exemplar samples are often distributed in a different domain away from that of the original exemplar samples, that is, a domain shift. To alleviate this problem, we propose a duplet learning scheme that seeks to construct domain-compatible feature extractors and classifiers, which greatly narrows down the above domain gap. As a result, these low-fidelity auxiliary exemplar samples have the ability to moderately replace the original exemplar samples with a lower memory cost. In addition, we present a robust classifier adaptation scheme, which further refines the biased classifier (learned with the samples containing distillation label knowledge about old classes) with the help of the samples of pure true class labels. Experimental results demonstrate the effectiveness of this work against the state-of-the-art approaches.
As the number of Internet of Things (IoT) devices and systems have surged, IoT data analytics techniques have been developed to detect malicious cyber-attacks and secure IoT systems; however, concept drift issues often occur in IoT data analytics, as IoT data is often dynamic data streams that change over time, causing model degradation and attack detection failure. This is because traditional data analytics models are static models that cannot adapt to data distribution changes. In this paper, we propose a Performance Weighted Probability Averaging Ensemble (PWPAE) framework for drift adaptive IoT anomaly detection through IoT data stream analytics. Experiments on two public datasets show the effectiveness of our proposed PWPAE method compared against state-of-the-art methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا