ﻻ يوجد ملخص باللغة العربية
As the number of Internet of Things (IoT) devices and systems have surged, IoT data analytics techniques have been developed to detect malicious cyber-attacks and secure IoT systems; however, concept drift issues often occur in IoT data analytics, as IoT data is often dynamic data streams that change over time, causing model degradation and attack detection failure. This is because traditional data analytics models are static models that cannot adapt to data distribution changes. In this paper, we propose a Performance Weighted Probability Averaging Ensemble (PWPAE) framework for drift adaptive IoT anomaly detection through IoT data stream analytics. Experiments on two public datasets show the effectiveness of our proposed PWPAE method compared against state-of-the-art methods.
Given a stream of entries over time in a multi-aspect data setting where concept drift is present, how can we detect anomalous activities? Most of the existing unsupervised anomaly detection approaches seek to detect anomalous events in an offline fa
When concept drift is detected during classification in a data stream, a common remedy is to retrain a frameworks classifier. However, this loses useful information if the classifier has learnt the current concept well, and this concept will recur ag
Deep Learning (DL) has been utilized pervasively in the Internet of Things (IoT). One typical application of DL in IoT is device identification from wireless signals, namely Non-cryptographic Device Identification (NDI). However, learning components
Federated learning (FL) involves multiple distributed devices jointly training a shared model without any of the participants having to reveal their local data to a centralized server. Most of previous FL approaches assume that data on devices are fi
XGBoost is one of the most widely used machine learning models in the industry due to its superior learning accuracy and efficiency. Targeting at data isolation issues in the big data problems, it is crucial to deploy a secure and efficient federated