ترغب بنشر مسار تعليمي؟ اضغط هنا

PWPAE: An Ensemble Framework for Concept Drift Adaptation in IoT Data Streams

130   0   0.0 ( 0 )
 نشر من قبل Li Yang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As the number of Internet of Things (IoT) devices and systems have surged, IoT data analytics techniques have been developed to detect malicious cyber-attacks and secure IoT systems; however, concept drift issues often occur in IoT data analytics, as IoT data is often dynamic data streams that change over time, causing model degradation and attack detection failure. This is because traditional data analytics models are static models that cannot adapt to data distribution changes. In this paper, we propose a Performance Weighted Probability Averaging Ensemble (PWPAE) framework for drift adaptive IoT anomaly detection through IoT data stream analytics. Experiments on two public datasets show the effectiveness of our proposed PWPAE method compared against state-of-the-art methods.



قيم البحث

اقرأ أيضاً

Given a stream of entries over time in a multi-aspect data setting where concept drift is present, how can we detect anomalous activities? Most of the existing unsupervised anomaly detection approaches seek to detect anomalous events in an offline fa shion and require a large amount of data for training. This is not practical in real-life scenarios where we receive the data in a streaming manner and do not know the size of the stream beforehand. Thus, we need a data-efficient method that can detect and adapt to changing data trends, or concept drift, in an online manner. In this work, we propose MemStream, a streaming multi-aspect anomaly detection framework, allowing us to detect unusual events as they occur while being resilient to concept drift. We leverage the power of a denoising autoencoder to learn representations and a memory module to learn the dynamically changing trend in data without the need for labels. We prove the optimum memory size required for effective drift handling. Furthermore, MemStream makes use of two architecture design choices to be robust to memory poisoning. Experimental results show the effectiveness of our approach compared to state-of-the-art streaming baselines using 2 synthetic datasets and 11 real-world datasets.
When concept drift is detected during classification in a data stream, a common remedy is to retrain a frameworks classifier. However, this loses useful information if the classifier has learnt the current concept well, and this concept will recur ag ain in the future. Some frameworks retain and reuse classifiers, but it can be time-consuming to select an appropriate classifier to reuse. These frameworks rarely match the accuracy of state-of-the-art ensemble approaches. For many data stream tasks, speed is important: fast, accurate frameworks are needed for time-dependent applications. We propose the Enhanced Concept Profiling Framework (ECPF), which aims to recognise recurring concepts and reuse a classifier trained previously, enabling accurate classification immediately following a drift. The novelty of ECPF is in how it uses similarity of classifications on new data, between a new classifier and existing classifiers, to quickly identify the best classifier to reuse. It always trains both a new classifier and a reused classifier, and retains the more accurate classifier when concept drift occurs. Finally, it creates a copy of reused classifiers, so a classifier well-suited for a recurring concept will not be impacted by being trained on a different concept. In our experiments, ECPF classifies significantly more accurately than a state-of-the-art classifier reuse framework (Diversity Pool) and a state-of-the-art ensemble technique (Adaptive Random Forest) on synthetic datasets with recurring concepts. It classifies real-world datasets five times faster than Diversity Pool, and six times faster than Adaptive Random Forest and is not significantly less accurate than either.
Deep Learning (DL) has been utilized pervasively in the Internet of Things (IoT). One typical application of DL in IoT is device identification from wireless signals, namely Non-cryptographic Device Identification (NDI). However, learning components in NDI systems have to evolve to adapt to operational variations, such a paradigm is termed as Incremental Learning (IL). Various IL algorithms have been proposed and many of them require dedicated space to store the increasing amount of historical data, and therefore, they are not suitable for IoT or mobile applications. However, conventional IL schemes can not provide satisfying performance when historical data are not available. In this paper, we address the IL problem in NDI from a new perspective, firstly, we provide a new metric to measure the degree of topological maturity of DNN models from the degree of conflict of class-specific fingerprints. We discover that an important cause for performance degradation in IL enabled NDI is owing to the conflict of devices fingerprints. Second, we also show that the conventional IL schemes can lead to low topological maturity of DNN models in NDI systems. Thirdly, we propose a new Channel Separation Enabled Incremental Learning (CSIL) scheme without using historical data, in which our strategy can automatically separate devices fingerprints in different learning stages and avoid potential conflict. Finally, We evaluated the effectiveness of the proposed framework using real data from ADS-B (Automatic Dependent Surveillance-Broadcast), an application of IoT in aviation. The proposed framework has the potential to be applied to accurate identification of IoT devices in a variety of IoT applications and services. Data and code available at IEEE Dataport (DOI: 10.21227/1bxc-ke87) and url{https://github.com/pcwhy/CSIL}}
Federated learning (FL) involves multiple distributed devices jointly training a shared model without any of the participants having to reveal their local data to a centralized server. Most of previous FL approaches assume that data on devices are fi xed and stationary during the training process. However, this assumption is unrealistic because these devices usually have varying sampling rates and different system configurations. In addition, the underlying distribution of the device data can change dynamically over time, which is known as concept drift. Concept drift makes the learning process complicated because of the inconsistency between existing and upcoming data. Traditional concept drift handling techniques such as chunk based and ensemble learning-based methods are not suitable in the federated learning frameworks due to the heterogeneity of local devices. We propose a novel approach, FedConD, to detect and deal with the concept drift on local devices and minimize the effect on the performance of models in asynchronous FL. The drift detection strategy is based on an adaptive mechanism which uses the historical performance of the local models. The drift adaptation is realized by adjusting the regularization parameter of objective function on each local device. Additionally, we design a communication strategy on the server side to select local updates in a prudent fashion and speed up model convergence. Experimental evaluations on three evolving data streams and two image datasets show that model~detects and handles concept drift, and also reduces the overall communication cost compared to other baseline methods.
XGBoost is one of the most widely used machine learning models in the industry due to its superior learning accuracy and efficiency. Targeting at data isolation issues in the big data problems, it is crucial to deploy a secure and efficient federated XGBoost (FedXGB) model. Existing FedXGB models either have data leakage issues or are only applicable to the two-party setting with heavy communication and computation overheads. In this paper, a lossless multi-party federated XGB learning framework is proposed with a security guarantee, which reshapes the XGBoosts split criterion calculation process under a secret sharing setting and solves the leaf weight calculation problem by leveraging distributed optimization. Remarkably, a thorough analysis of model security is provided as well, and multiple numerical results showcase the superiority of the proposed FedXGB compared with the state-of-the-art models on benchmark datasets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا