ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the inverse source problem for the time-fractional diffusion equation, which has been known to be an ill-posed problem. To deal with the ill-posedness of the problem, we propose to transform the problem into a regularized problem with L^2 and total variational (TV) regularization terms. Differing from the classical Tikhonov regularization with L^2 penalty terms, the TV regularization is beneficial for reconstructing discontinuous or piecewise constant solutions. The regularized problem is then approximated by a fully discrete scheme. Our theoretical results include: estimate of the error order between the discrete problem and the continuous direct problem; the convergence rate of the discrete regularized solution to the target source term; and the convergence of the regularized solution with respect to the noise level. Then we propose an accelerated primal-dual iterative algorithm based on an equivalent saddle-point reformulation of the discrete regularized model. Finally, a series of numerical tests are carried out to demonstrate the efficiency and accuracy of the algorithm.
In this article, we are concerned with the analysis on the numerical reconstruction of the spatial component in the source term of a time-fractional diffusion equation. This ill-posed problem is solved through a stabilized nonlinear minimization syst
We consider $L^1$-TV regularization of univariate signals with values on the real line or on the unit circle. While the real data space leads to a convex optimization problem, the problem is non-convex for circle-valued data. In this paper, we derive
We consider the Vlasov-Fokker-Planck equation with random electric field where the random field is parametrized by countably many infinite random variables due to uncertainty. At the theoretical level, with suitable assumption on the anisotropy of th
We propose a set of iterative regularization algorithms for the TV-Stokes model to restore images from noisy images with Gaussian noise. These are some extensions of the iterative regularization algorithm proposed for the classical Rudin-Osher-Fatemi
We show stability of the $L^2$-projection onto Lagrange finite element spaces with respect to (weighted) $L^p$ and $W^{1,p}$-norms for any polynomial degree and for any space dimension under suitable conditions on the mesh grading. This includes $W^{