ﻻ يوجد ملخص باللغة العربية
We consider $L^1$-TV regularization of univariate signals with values on the real line or on the unit circle. While the real data space leads to a convex optimization problem, the problem is non-convex for circle-valued data. In this paper, we derive exact algorithms for both data spaces. A key ingredient is the reduction of the infinite search spaces to a finite set of configurations, which can be scanned by the Viterbi algorithm. To reduce the computational complexity of the involved tabulations, we extend the technique of distance transforms to non-uniform grids and to the circular data space. In total, the proposed algorithms have complexity $mathscr{O}(KN)$ where $N$ is the length of the signal and $K$ is the number of different values in the data set. In particular, the complexity is $mathscr{O}(N)$ for quantized data. It is the first exact algorithm for TV regularization with circle-valued data, and it is competitive with the state-of-the-art methods for scalar data, assuming that the latter are quantized.
In this paper, we consider the sparse regularization of manifold-valued data with respect to an interpolatory wavelet/multiscale transform. We propose and study variational models for this task and provide results on their well-posedness. We present
In this paper, we consider the variational regularization of manifold-valued data in the inverse problems setting. In particular, we consider TV and TGV regularization for manifold-valued data with indirect measurement operators. We provide results o
We propose a set of iterative regularization algorithms for the TV-Stokes model to restore images from noisy images with Gaussian noise. These are some extensions of the iterative regularization algorithm proposed for the classical Rudin-Osher-Fatemi
We consider total variation minimization for manifold valued data. We propose a cyclic proximal point algorithm and a parallel proximal point algorithm to minimize TV functionals with $ell^p$-type data terms in the manifold case. These algorithms are
In this paper, we consider the inverse source problem for the time-fractional diffusion equation, which has been known to be an ill-posed problem. To deal with the ill-posedness of the problem, we propose to transform the problem into a regularized p