ﻻ يوجد ملخص باللغة العربية
In this article, we are concerned with the analysis on the numerical reconstruction of the spatial component in the source term of a time-fractional diffusion equation. This ill-posed problem is solved through a stabilized nonlinear minimization system by an appropriately selected Tikhonov regularization. The existence and the stability of the optimization system are demonstrated. The nonlinear optimization problem is approximated by a fully discrete scheme, whose convergence is established under a novel result verified in this study that the $H^1$-norm of the solution to the discrete forward system is uniformly bounded. The iterative thresholding algorithm is proposed to solve the discrete minimization, and several numerical experiments are presented to show the efficiency and the accuracy of the algorithm.
In this work, an inverse problem in the fractional diffusion equation with random source is considered. Statistical moments are used of the realizations of single point observation $u(x_0,t,omega).$ We build the representation of the solution $u$ in
In this paper, we consider the strong convergence of the time-space fractional diffusion equation driven by fractional Gaussion noise with Hurst index $Hin(frac{1}{2},1)$. A sharp regularity estimate of the mild solution and the numerical scheme cons
In this work, an inverse problem in the fractional diffusion equation with random source is considered. The measurements used are the statistical moments of the realizations of single point data $u(x_0,t,omega).$ We build the representation of the so
Time fractional PDEs have been used in many applications for modeling and simulations. Many of these applications are multiscale and contain high contrast variations in the media properties. It requires very small time step size to perform detailed c
Fractional Fokker-Planck equation plays an important role in describing anomalous dynamics. To the best of our knowledge, the existing discussions mainly focus on this kind of equation involving one diffusion operator. In this paper, we first derive