ترغب بنشر مسار تعليمي؟ اضغط هنا

Occam Factor for Gaussian Models With Unknown Variance Structure

62   0   0.0 ( 0 )
 نشر من قبل Zachary Pisano
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss model selection to determine whether the variance-covariance matrix of a multivariate Gaussian model with known mean should be considered to be a constant diagonal, a non-constant diagonal, or an arbitrary positive definite matrix. Of particular interest is the relationship between Bayesian evidence and the flexibility penalty due to Priebe and Rougier. For the case of an exponential family in canonical form equipped with a conjugate prior for the canonical parameter, flexibility may be exactly decomposed into the usual BIC likelihood penalty and a $O_p(1)$ term, the latter of which we explicitly compute. We also investigate the asymptotics of Bayes factors for linearly nested canonical exponential families equipped with conjugate priors; in particular, we find the exact rates at which Bayes factors correctly diverge in favor of the correct model: linearly and logarithmically in the number of observations when the full and nested models are true, respectively. Such theoretical considerations for the general case permit us to fully express the asymptotic behavior of flexibility and Bayes factors for the variance-covariance structure selection problem when we assume that the prior for the model precision is a member of the gamma/Wishart family of distributions or is uninformative. Simulations demonstrate evidences immediate and superior performance in model selection compared to approximate criteria such as the BIC. We extend the framework to the multivariate Gaussian linear model with three data-driven examples.



قيم البحث

اقرأ أيضاً

We propose a novel approach to estimating the precision matrix of multivariate Gaussian data that relies on decomposing them into a low-rank and a diagonal component. Such decompositions are very popular for modeling large covariance matrices as they admit a latent factor based representation that allows easy inference. The same is not true for precision matrices, due to the lack of computationally convenient representation, which restricts the use to low to moderate dimensional problems. We address this remarkable gap in the literature by introducing a novel latent variable representation for such decomposition for precision matrices as well. The construction leads to an efficient Gibbs sampler that scales very well to high-dimensional problems far beyond the limits of the current state-of-the-art. The ability to efficiently explore the full posterior space allows the model uncertainty to be easily assessed. The decomposition also crucially allows us to adapt sparsity inducing priors to shrink the insignificant entries of the precision matrix toward zero, making the approach adaptable to high-dimensional small-sample-size sparse settings. Exact zeros in the matrix encoding the underlying conditional independence graph are then determined via a novel posterior false discovery rate control procedure. We evaluate the methods empirical performance through synthetic experiments and illustrate its practical utility in data sets from two different application domains.
Gaussian Graphical models (GGM) are widely used to estimate the network structures in many applications ranging from biology to finance. In practice, data is often corrupted by latent confounders which biases inference of the underlying true graphica l structure. In this paper, we compare and contrast two strategies for inference in graphical models with latent confounders: Gaussian graphical models with latent variables (LVGGM) and PCA-based removal of confounding (PCA+GGM). While these two approaches have similar goals, they are motivated by different assumptions about confounding. In this paper, we explore the connection between these two approaches and propose a new method, which combines the strengths of these two approaches. We prove the consistency and convergence rate for the PCA-based method and use these results to provide guidance about when to use each method. We demonstrate the effectiveness of our methodology using both simulations and in two real-world applications.
We consider the modeling of data generated by a latent continuous-time Markov jump process with a state space of finite but unknown dimensions. Typically in such models, the number of states has to be pre-specified, and Bayesian inference for a fixed number of states has not been studied until recently. In addition, although approaches to address the problem for discrete-time models have been developed, no method has been successfully implemented for the continuous-time case. We focus on reversible jump Markov chain Monte Carlo which allows the trans-dimensional move among different numbers of states in order to perform Bayesian inference for the unknown number of states. Specifically, we propose an efficient split-combine move which can facilitate the exploration of the parameter space, and demonstrate that it can be implemented effectively at scale. Subsequently, we extend this algorithm to the context of model-based clustering, allowing numbers of states and clusters both determined during the analysis. The model formulation, inference methodology, and associated algorithm are illustrated by simulation studies. Finally, We apply this method to real data from a Canadian healthcare system in Quebec.
111 - Faicel Chamroukhi 2014
Regression mixture models are widely studied in statistics, machine learning and data analysis. Fitting regression mixtures is challenging and is usually performed by maximum likelihood by using the expectation-maximization (EM) algorithm. However, i t is well-known that the initialization is crucial for EM. If the initialization is inappropriately performed, the EM algorithm may lead to unsatisfactory results. The EM algorithm also requires the number of clusters to be given a priori; the problem of selecting the number of mixture components requires using model selection criteria to choose one from a set of pre-estimated candidate models. We propose a new fully unsupervised algorithm to learn regression mixture models with unknown number of components. The developed unsupervised learning approach consists in a penalized maximum likelihood estimation carried out by a robust expectation-maximization (EM) algorithm for fitting polynomial, spline and B-spline regressions mixtures. The proposed learning approach is fully unsupervised: 1) it simultaneously infers the model parameters and the optimal number of the regression mixture components from the data as the learning proceeds, rather than in a two-fold scheme as in standard model-based clustering using afterward model selection criteria, and 2) it does not require accurate initialization unlike the standard EM for regression mixtures. The developed approach is applied to curve clustering problems. Numerical experiments on simulated data show that the proposed robust EM algorithm performs well and provides accurate results in terms of robustness with regard initialization and retrieving the optimal partition with the actual number of clusters. An application to real data in the framework of functional data clustering, confirms the benefit of the proposed approach for practical applications.
Factor structures or interactive effects are convenient devices to incorporate latent variables in panel data models. We consider fixed effect estimation of nonlinear panel single-index models with factor structures in the unobservables, which includ e logit, probit, ordered probit and Poisson specifications. We establish that fixed effect estimators of model parameters and average partial effects have normal distributions when the two dimensions of the panel grow large, but might suffer of incidental parameter bias. We show how models with factor structures can also be applied to capture important features of network data such as reciprocity, degree heterogeneity, homophily in latent variables and clustering. We illustrate this applicability with an empirical example to the estimation of a gravity equation of international trade between countries using a Poisson model with multiple factors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا