ﻻ يوجد ملخص باللغة العربية
We discuss model selection to determine whether the variance-covariance matrix of a multivariate Gaussian model with known mean should be considered to be a constant diagonal, a non-constant diagonal, or an arbitrary positive definite matrix. Of particular interest is the relationship between Bayesian evidence and the flexibility penalty due to Priebe and Rougier. For the case of an exponential family in canonical form equipped with a conjugate prior for the canonical parameter, flexibility may be exactly decomposed into the usual BIC likelihood penalty and a $O_p(1)$ term, the latter of which we explicitly compute. We also investigate the asymptotics of Bayes factors for linearly nested canonical exponential families equipped with conjugate priors; in particular, we find the exact rates at which Bayes factors correctly diverge in favor of the correct model: linearly and logarithmically in the number of observations when the full and nested models are true, respectively. Such theoretical considerations for the general case permit us to fully express the asymptotic behavior of flexibility and Bayes factors for the variance-covariance structure selection problem when we assume that the prior for the model precision is a member of the gamma/Wishart family of distributions or is uninformative. Simulations demonstrate evidences immediate and superior performance in model selection compared to approximate criteria such as the BIC. We extend the framework to the multivariate Gaussian linear model with three data-driven examples.
We propose a novel approach to estimating the precision matrix of multivariate Gaussian data that relies on decomposing them into a low-rank and a diagonal component. Such decompositions are very popular for modeling large covariance matrices as they
Gaussian Graphical models (GGM) are widely used to estimate the network structures in many applications ranging from biology to finance. In practice, data is often corrupted by latent confounders which biases inference of the underlying true graphica
We consider the modeling of data generated by a latent continuous-time Markov jump process with a state space of finite but unknown dimensions. Typically in such models, the number of states has to be pre-specified, and Bayesian inference for a fixed
Regression mixture models are widely studied in statistics, machine learning and data analysis. Fitting regression mixtures is challenging and is usually performed by maximum likelihood by using the expectation-maximization (EM) algorithm. However, i
Factor structures or interactive effects are convenient devices to incorporate latent variables in panel data models. We consider fixed effect estimation of nonlinear panel single-index models with factor structures in the unobservables, which includ