ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian inference for continuous-time hidden Markov models with an unknown number of states

80   0   0.0 ( 0 )
 نشر من قبل Yu Luo
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the modeling of data generated by a latent continuous-time Markov jump process with a state space of finite but unknown dimensions. Typically in such models, the number of states has to be pre-specified, and Bayesian inference for a fixed number of states has not been studied until recently. In addition, although approaches to address the problem for discrete-time models have been developed, no method has been successfully implemented for the continuous-time case. We focus on reversible jump Markov chain Monte Carlo which allows the trans-dimensional move among different numbers of states in order to perform Bayesian inference for the unknown number of states. Specifically, we propose an efficient split-combine move which can facilitate the exploration of the parameter space, and demonstrate that it can be implemented effectively at scale. Subsequently, we extend this algorithm to the context of model-based clustering, allowing numbers of states and clusters both determined during the analysis. The model formulation, inference methodology, and associated algorithm are illustrated by simulation studies. Finally, We apply this method to real data from a Canadian healthcare system in Quebec.



قيم البحث

اقرأ أيضاً

We develop clustering procedures for longitudinal trajectories based on a continuous-time hidden Markov model (CTHMM) and a generalized linear observation model. Specifically in this paper, we carry out finite and infinite mixture model-based cluster ing for a CTHMM and achieve inference using Markov chain Monte Carlo (MCMC). For a finite mixture model with prior on the number of components, we implement reversible-jump MCMC to facilitate the trans-dimensional move between different number of clusters. For a Dirichlet process mixture model, we utilize restricted Gibbs sampling split-merge proposals to expedite the MCMC algorithm. We employ proposed algorithms to the simulated data as well as a real data example, and the results demonstrate the desired performance of the new sampler.
We use the theory of normal variance-mean mixtures to derive a data augmentation scheme for models that include gamma functions. Our methodology applies to many situations in statistics and machine learning, including Multinomial-Dirichlet distributi ons, Negative binomial regression, Poisson-Gamma hierarchical models, Extreme value models, to name but a few. All of those models include a gamma function which does not admit a natural conjugate prior distribution providing a significant challenge to inference and prediction. To provide a data augmentation strategy, we construct and develop the theory of the class of Exponential Reciprocal Gamma distributions. This allows scalable EM and MCMC algorithms to be developed. We illustrate our methodology on a number of examples, including gamma shape inference, negative binomial regression and Dirichlet allocation. Finally, we conclude with directions for future research.
We consider the problem of flexible modeling of higher order hidden Markov models when the number of latent states and the nature of the serial dependence, including the true order, are unknown. We propose Bayesian nonparametric methodology based on tensor factorization techniques that can characterize any transition probability with a specified maximal order, allowing automated selection of the important lags and capturing higher order interactions among the lags. Theoretical results provide insights into identifiability of the emission distributions and asymptotic behavior of the posterior. We design efficient Markov chain Monte Carlo algorithms for posterior computation. In simulation experiments, the method vastly outperformed its first and higher order competitors not just in higher order settings, but, remarkably, also in first order cases. Practical utility is illustrated using real world applications.
In forecasting problems it is important to know whether or not recent events represent a regime change (low long-term predictive potential), or rather a local manifestation of longer term effects (potentially higher predictive potential). Mathematica lly, a key question is about whether the underlying stochastic process exhibits memory, and if so whether the memory is long in a precise sense. Being able to detect or rule out such effects can have a profound impact on speculative investment (e.g., in financial markets) and inform public policy (e.g., characterising the size and timescales of the earth systems response to the anthropogenic CO2 perturbation). Most previous work on inference of long memory effects is frequentist in nature. Here we provide a systematic treatment of Bayesian inference for long memory processes via the Autoregressive Fractional Integrated Moving Average (ARFIMA) model. In particular, we provide a new approximate likelihood for efficient parameter inference, and show how nuisance parameters (e.g., short memory effects) can be integrated over in order to focus on long memory parameters and hypothesis testing more directly than ever before. We illustrate our new methodology on both synthetic and observational data, with favorable comparison to the standard estimators.
This preprint has been reviewed and recommended by Peer Community In Evolutionary Biology (http://dx.doi.org/10.24072/pci.evolbiol.100036). Approximate Bayesian computation (ABC) has grown into a standard methodology that manages Bayesian inference f or models associated with intractable likelihood functions. Most ABC implementations require the preliminary selection of a vector of informative statistics summarizing raw data. Furthermore, in almost all existing implementations, the tolerance level that separates acceptance from rejection of simulated parameter values needs to be calibrated. We propose to conduct likelihood-free Bayesian inferences about parameters with no prior selection of the relevant components of the summary statistics and bypassing the derivation of the associated tolerance level. The approach relies on the random forest methodology of Breiman (2001) applied in a (non parametric) regression setting. We advocate the derivation of a new random forest for each component of the parameter vector of interest. When compared with earlier ABC solutions, this method offers significant gains in terms of robustness to the choice of the summary statistics, does not depend on any type of tolerance level, and is a good trade-off in term of quality of point estimator precision and credible interval estimations for a given computing time. We illustrate the performance of our methodological proposal and compare it with earlier ABC methods on a Normal toy example and a population genetics example dealing with human population evolution. All methods designed here have been incorporated in the R package abcrf (version 1.7) available on CRAN.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا