ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonlinear Factor Models for Network and Panel Data

190   0   0.0 ( 0 )
 نشر من قبل Ivan Fernandez-Val
 تاريخ النشر 2014
والبحث باللغة English




اسأل ChatGPT حول البحث

Factor structures or interactive effects are convenient devices to incorporate latent variables in panel data models. We consider fixed effect estimation of nonlinear panel single-index models with factor structures in the unobservables, which include logit, probit, ordered probit and Poisson specifications. We establish that fixed effect estimators of model parameters and average partial effects have normal distributions when the two dimensions of the panel grow large, but might suffer of incidental parameter bias. We show how models with factor structures can also be applied to capture important features of network data such as reciprocity, degree heterogeneity, homophily in latent variables and clustering. We illustrate this applicability with an empirical example to the estimation of a gravity equation of international trade between countries using a Poisson model with multiple factors.



قيم البحث

اقرأ أيضاً

179 - Takuya Ishihara 2020
In this study, we develop a novel estimation method of the quantile treatment effects (QTE) under the rank invariance and rank stationarity assumptions. Ishihara (2020) explores identification of the nonseparable panel data model under these assumpti ons and propose a parametric estimation based on the minimum distance method. However, the minimum distance estimation using this process is computationally demanding when the dimensionality of covariates is large. To overcome this problem, we propose a two-step estimation method based on the quantile regression and minimum distance method. We then show consistency and asymptotic normality of our estimator. Monte Carlo studies indicate that our estimator performs well in finite samples. Last, we present two empirical illustrations, to estimate the distributional effects of insurance provision on household production and of TV watching on child cognitive development.
We develop a new approach for identifying and estimating average causal effects in panel data under a linear factor model with unmeasured confounders. Compared to other methods tackling factor models such as synthetic controls and matrix completion, our method does not require the number of time periods to grow infinitely. Instead, we draw inspiration from the two-way fixed effect model as a special case of the linear factor model, where a simple difference-in-differences transformation identifies the effect. We show that analogous, albeit more complex, transformations exist in the more general linear factor model, providing a new means to identify the effect in that model. In fact many such transformations exist, called bridge functions, all identifying the same causal effect estimand. This poses a unique challenge for estimation and inference, which we solve by targeting the minimal bridge function using a regularized estimation approach. We prove that our resulting average causal effect estimator is root-N consistent and asymptotically normal, and we provide asymptotically valid confidence intervals. Finally, we provide extensions for the case of a linear factor model with time-varying unmeasured confounders.
This paper considers fixed effects estimation and inference in linear and nonlinear panel data models with random coefficients and endogenous regressors. The quantities of interest -- means, variances, and other moments of the random coefficients -- are estimated by cross sectional sample moments of GMM estimators applied separately to the time series of each individual. To deal with the incidental parameter problem introduced by the noise of the within-individual estimators in short panels, we develop bias corrections. These corrections are based on higher-order asymptotic expansions of the GMM estimators and produce improved point and interval estimates in moderately long panels. Under asymptotic sequences where the cross sectional and time series dimensions of the panel pass to infinity at the same rate, the uncorrected estimator has an asymptotic bias of the same order as the asymptotic variance. The bias corrections remove the bias without increasing variance. An empirical example on cigarette demand based on Becker, Grossman and Murphy (1994) shows significant heterogeneity in the price effect across U.S. states.
We derive fixed effects estimators of parameters and average partial effects in (possibly dynamic) nonlinear panel data models with individual and time effects. They cover logit, probit, ordered probit, Poisson and Tobit models that are important for many empirical applications in micro and macroeconomics. Our estimators use analytical and jackknife bias corrections to deal with the incidental parameter problem, and are asymptotically unbiased under asymptotic sequences where $N/T$ converges to a constant. We develop inference methods and show that they perform well in numerical examples.
Nonseparable panel models are important in a variety of economic settings, including discrete choice. This paper gives identification and estimation results for nonseparable models under time homogeneity conditions that are like time is randomly assi gned or time is an instrument. Partial identification results for average and quantile effects are given for discrete regressors, under static or dynamic conditions, in fully nonparametric and in semiparametric models, with time effects. It is shown that the usual, linear, fixed-effects estimator is not a consistent estimator of the identified average effect, and a consistent estimator is given. A simple estimator of identified quantile treatment effects is given, providing a solution to the important problem of estimating quantile treatment effects from panel data. Bounds for overall effects in static and dynamic models are given. The dynamic bounds provide a partial identification solution to the important problem of estimating the effect of state dependence in the presence of unobserved heterogeneity. The impact of $T$, the number of time periods, is shown by deriving shrinkage rates for the identified set as $T$ grows. We also consider semiparametric, discrete-choice models and find that semiparametric panel bounds can be much tighter than nonparametric bounds. Computationally-convenient methods for semiparametric models are presented. We propose a novel inference method that applies in panel data and other settings and show that it produces uniformly valid confidence regions in large samples. We give empirical illustrations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا