ترغب بنشر مسار تعليمي؟ اضغط هنا

Revealing Thermal Comptonization of accretion-disk photons in IC4329A with AstroSat

99   0   0.0 ( 0 )
 نشر من قبل Prakash Tripathi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Prakash Tripathi




اسأل ChatGPT حول البحث

We present five simultaneous UV/X-ray observations of IC4329A by AstroSat, performed over {a five-month} period. We utilize the excellent spatial resolution of the Ultra-Violet Imaging Telescope (UVIT) onboard AstroSat to reliably separate the intrinsic AGN flux from the host galaxy emission and to correct for the Galactic and internal reddening, as well as the contribution from the narrow and broad-line regions. We detect large-amplitude UV variability, which is unusual for a large black hole mass AGN, like IC4329A, over such a small period. In fact, the fractional variability amplitude is larger in the UV band than in the X-ray band. This demonstrates that the observed UV variability is intrinsic to the disk, and is not due to X-ray illumination. The joint X-ray spectral analyses of five SXT and LAXPC spectral data reveal a soft-X-ray excess component, a narrow iron-line (with no indication of a significant Compton hump), and a steepening power-law ($DeltaGammasim 0.21$) with increasing X-ray flux. The soft excess component could arise due to thermal Comptonization of the inner disk photons in a warm corona with $kT_esim 0.26$ keV. The UV emission we detect acts as the primary seed photons for the hot corona, which produces the broadband X-ray continuum. The X-ray spectral variability is well described by the cooling of this corona from $kT_esim42$ keV to $sim 32$ keV with increasing UV flux, while the optical depth remains constant at $tausim 2.3$.



قيم البحث

اقرأ أيضاً

We present a study of far and near-ultraviolet emission from the accretion disk in a powerful Seyfert 1 galaxy IC4329A using observations performed with the Ultraviolet Imaging Telescope (UVIT) onboard AstroSat. These data provide the highest spatial resolution and deepest images of IC4329A in the far and near UV bands acquired to date. The excellent spatial resolution of the UVIT data has allowed us to accurately separate the extended emission from the host galaxy and the AGN emission in the far and near UV bands. We derive the intrinsic AGN flux after correcting for the Galactic and internal reddening, as well as for the contribution of emission lines from the broad and narrow-line regions. The intrinsic UV continuum emission shows a marked deficit compared to that expected from the standard models of the accretion disk around an estimated black hole mass of 1-2x10^8Msun when the disk extends to the innermost stable circular orbit. We find that the intrinsic UV continuum is fully consistent with the standard disk models, but only if the disk emits from distances larger than 80-150 gravitational radii.
Aims: Spectral and temporal analysis of the NuSTAR observation Galactic Be-XRB Swift J1845.7-0037. during its recent outburst. Methods: For the spectral analysis we use both phenomenological and physics-based models. We employ an often used empirical model to identify the main characteristics of the spectral shape in relation to nominal spectral characteristics of X-ray pulsars. Additionally, we used the latest version of Bulk & Thermal comptonization model (BW), to assess the validity of the spectral components required by the empirical model and to investigate the origin of the hard X-ray emission. We also analyzed the source light-curve, studying the pulse shape at different energy ranges and tracking the spectral evolution with pulse phase by using the model independent hardness ratio (HR). Results: We find that while both the empirical and physical (BW) spectral models can produce good spectral fits, the BW model returns physically plausible best-fit values for the source parameters and does not require any additional spectral components to the non-thermal, accretion column emission. The BW model also yielded an estimation of the neutron star magnetic field placing it in the 10^12G range. Conclusions: Our results, show that the spectral and temporal characteristics of the source emission are consistent with the scattering processes expected for radiation dominated shocks within the accretion column of highly magnetized accreting neutron stars. We further indicate that physically-derived spectral models such as BW, can be used to tentatively infer fundamental source parameters, in the absence of more direct observational signatures.
177 - J. Gofford 2014
We present evidence for the rapid variability of the high velocity iron K-shell absorption in the nearby ($z=0.184$) quasar PDS456. From a recent long Suzaku observation in 2013 ($sim1$Ms effective duration) we find that the the equivalent width of i ron K absorption increases by a factor of $sim5$ during the observation, increasing from $<105$eV within the first 100ks of the observation, towards a maximum depth of $sim500$eV near the end. The implied outflow velocity of $sim0.25$c is consistent with that claimed from earlier (2007, 2011) Suzaku observations. The absorption varies on time-scales as short as $sim1$ week. We show that this variability can be equally well attributed to either (i) an increase in column density, plausibly associated with a clumpy time-variable outflow, or (ii) the decreasing ionization of a smooth homogeneous outflow which is in photo-ionization equilibrium with the local photon field. The variability allows a direct measure of absorber location, which is constrained to within $r=200-3500$$rm{r_{g}}$ of the black hole. Even in the most conservative case the kinetic power of the outflow is $gtrsim6%$ of the Eddington luminosity, with a mass outflow rate in excess of $sim40%$ of the Eddington accretion rate. The wind momentum rate is directly equivalent to the Eddington momentum rate which suggests that the flow may have been accelerated by continuum-scattering during an episode of Eddington-limited accretion.
We consider the formation of photon spectrum at the photosphere of ultrarelativistically expanding outflow. We use the Fokker-Planck approximation to the Boltzmann equation, and obtain the generalized Kompaneets equation which takes into account anis otropic distribution of photons developed near the photosphere. This equation is solved numerically for relativistic steady wind and the observed spectrum is found in agreement with previous studies. We also study the photospheric emission for different temperature dependences on radius in such outflows. In particular, we found that for $Tpropto r^{-2}$ the Band low energy photon index of the observed spectrum is $alphasimeq -1$, as typically observed in Gamma Ray Bursts.
A large fraction of accreting black hole and neutron stars systems present clear evidence of the reprocessing of X-rays in the atmosphere of an optically-thick accretion disk. The main hallmarks of X-ray reflection include fluorescent K-shell emissio n lines from iron ($sim 6.4-6.9$ keV), the absorption iron K-edge ($sim 7-9$ keV), and a broad featureless component known as the Compton hump ($sim 20-40$ keV). This Compton hump is produced as the result of the scattering of high-energy photons ($E gtrsim 10$ keV) of the relatively colder electrons ($T_e sim 10^5-10^7$ K) in the accretion disk, in combination with photoelectric absorption from iron. The treatment of this process in most current models of ionized X-ray reflection has been done using an approximated Gaussian redistribution kernel. This approach works sufficiently well up to $sim100$ keV, but it becomes largely inaccurate at higher energies and at relativistic temperatures ($T_esim10^9$ K). We present new calculations of X-ray reflection using a modified version of our code XILLVER, including an accurate solution for Compton scattering of the reflected unpolarized photons in the disk atmosphere. This solution takes into account quantum electrodynamic and relativistic effects allowing the correct treatment of high photon energies and electron temperatures. We show new reflection spectra computed with this model, and discuss the improvements achieved in the reproducing the correct shape of the Compton hump, the discrepancies with previous calculations, and the expected impact of these new models in the interpretation of observational data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا