ﻻ يوجد ملخص باللغة العربية
We present evidence for the rapid variability of the high velocity iron K-shell absorption in the nearby ($z=0.184$) quasar PDS456. From a recent long Suzaku observation in 2013 ($sim1$Ms effective duration) we find that the the equivalent width of iron K absorption increases by a factor of $sim5$ during the observation, increasing from $<105$eV within the first 100ks of the observation, towards a maximum depth of $sim500$eV near the end. The implied outflow velocity of $sim0.25$c is consistent with that claimed from earlier (2007, 2011) Suzaku observations. The absorption varies on time-scales as short as $sim1$ week. We show that this variability can be equally well attributed to either (i) an increase in column density, plausibly associated with a clumpy time-variable outflow, or (ii) the decreasing ionization of a smooth homogeneous outflow which is in photo-ionization equilibrium with the local photon field. The variability allows a direct measure of absorber location, which is constrained to within $r=200-3500$$rm{r_{g}}$ of the black hole. Even in the most conservative case the kinetic power of the outflow is $gtrsim6%$ of the Eddington luminosity, with a mass outflow rate in excess of $sim40%$ of the Eddington accretion rate. The wind momentum rate is directly equivalent to the Eddington momentum rate which suggests that the flow may have been accelerated by continuum-scattering during an episode of Eddington-limited accretion.
We present results from monitoring observations of the gravitationally lensed quasar RX J1131-1231 performed with the Chandra X-ray Observatory. The X-ray observations were planned with relatively long exposures that allowed a search for energy-depen
Past X-ray observations of the nearby luminous quasar PDS 456 (at $z=0.184$) have revealed a wide angle accretion disk wind (Nardini et al. 2015), with an outflow velocity of $sim-0.25c$. Here we unveil a new, relativistic component of the wind throu
We report on a 120 ks Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made during an extended and bright soft state in June, 2015. An extremely rich disk wind absorption spectrum is detected, similar to that observed at lowe
We aim to use signatures of microlensing induced by stars in the foreground lens galaxy to infer the size of the accretion disk in the gravitationally lensed quasar Q 0957+561. The long-term photometric monitoring of this system (which so far has pro
We report on a detailed optical spectroscopic follow-up of the black hole transient MAXI J1820+070 (ASASSN-18ey). The observations cover the main part of the X-ray binary outburst, when the source alternated between hard and soft states following the