ﻻ يوجد ملخص باللغة العربية
We analytically derive the covariant form of the Riemann (curvature) tensor for homogeneous Metric-Affine Cosmologies. That is, we present, in a Cosmological setting, the most general covariant form of the full Riemann tensor including also its non-Riemannian pieces which are associated to spacetime torsion and non-metricity. Having done so we also compute a list of the curvature tensor by-products such as Ricci tensor, homothetic curvature, Ricci scalar, Einstein tensor etc. Finally we derive the generalized Metric-Affine version of the usual Gauss-Bonnet density in this background and demonstrate how under certain circumstances the latter represents a total derivative term.
We study non-trivial (i.e. non-Levi-Civita) connections in metric-affine Lovelock theories. First we study the projective invariance of general Lovelock actions and show that all connections constructed by acting with a projective transformation of t
In this article, we study a type of one-field approach for open inflationary universe scenario in the context of braneworld models with a Gauss-Bonnet correction term. For a one-bubble universe model, we determine and characterize the existence of th
We construct boson stars in (4+1)-dimensional Gauss-Bonnet gravity. We study the properties of the solutions in dependence on the coupling constants and investigate these in detail. While the thick wall limit is independent of the value of the Gauss-
This Thesis is devoted to the study of Metric-Affine Theories of Gravity and Applications to Cosmology. The thesis is organized as follows. In the first Chapter we define the various geometrical quantities that characterize a non-Riemannian geometry.
We investigate Euclidean wormholes in Gauss-Bonnet-dilaton gravity to explain the creation of the universe from nothing. We considered two types of dilaton couplings (i.e., the string-inspired model and the Gaussian model) and we obtained qualitative