ﻻ يوجد ملخص باللغة العربية
We study non-trivial (i.e. non-Levi-Civita) connections in metric-affine Lovelock theories. First we study the projective invariance of general Lovelock actions and show that all connections constructed by acting with a projective transformation of the Levi-Civita connection are allowed solutions, albeit physically equivalent to Levi-Civita. We then show that the (non-integrable) Weyl connection is also a solution for the specific case of the four-dimensional metric-affine Gauss-Bonnet action, for arbritrary vector fields. The existence of this solution is related to a two-vector family of transformations, that leaves the Gauss-Bonnet action invariant when acting on metric-compatible connections. We argue that this solution is physically inequivalent to the Levi-Civita connection, giving thus a counterexample to the statement that the metric and the Palatini formalisms are equivalent for Lovelock gravities. We discuss the mathematical structure of the set of solutions within the space of connections.
We analytically derive the covariant form of the Riemann (curvature) tensor for homogeneous Metric-Affine Cosmologies. That is, we present, in a Cosmological setting, the most general covariant form of the full Riemann tensor including also its non-R
We investigate the $Drightarrow 4$ limit of the $D$-dimensional Einstein-Gauss-Bonnet gravity, where the limit is taken with $tilde{alpha}=(D-4), alpha$ kept fixed and $alpha$ is the original Gauss-Bonnet coupling. Using the ADM decomposition in $D$
We comment on the recently introduced Gauss-Bonnet gravity in four dimensions. We argue that it does not make sense to consider this theory to be defined by a set of $Dto 4$ solutions of the higher-dimensional Gauss-Bonnet gravity. We show that a wel
We propose a regularization procedure for the novel Einstein-Gauss-Bonnet theory of gravity, which produces a set of field equations that can be written in closed form in four dimensions. Our method consists of introducing a counter term into the act
Exact solutions with torsion in Einstein-Gauss-Bonnet gravity are derived. These solutions have a cross product structure of two constant curvature manifolds. The equations of motion give a relation for the coupling constants of the theory in order t