ﻻ يوجد ملخص باللغة العربية
We investigate Euclidean wormholes in Gauss-Bonnet-dilaton gravity to explain the creation of the universe from nothing. We considered two types of dilaton couplings (i.e., the string-inspired model and the Gaussian model) and we obtained qualitatively similar results. There can exist Euclidean wormholes that explain the possible origin of our universe, where the dilaton field is located over the barrier of dilaton potential. This solution can exist even if dilaton potential does not satisfy slow-roll conditions. In addition, the probability is higher than that of the Hawking-Moss instanton with the same final condition. Therefore, Euclidean wormholes in Gauss-Bonnet-dilaton gravity are a possible and probable scenario, which explains the origin of our universe.
We report on a numerical investigation of the stability of scalarized black holes in Einstein dilaton Gauss-Bonnet (EdGB) gravity in the full dynamical theory, though restricted to spherical symmetry. We find evidence that for sufficiently small curv
In order to perform model-dependent tests of general relativity with gravitational wave observations, we must have access to numerical relativity binary black hole waveforms in theories beyond general relativity (GR). In this study, we focus on order
We present results from a numerical study of spherical gravitational collapse in shift symmetric Einstein dilaton Gauss-Bonnet (EdGB) gravity. This modified gravity theory has a single coupling parameter that when zero reduces to general relativity (
We develop a theoretical framework to study slowly rotating compact stars in a rather general class of alternative theories of gravity, with the ultimate goal of investigating constraints on alternative theories from electromagnetic and gravitational
A present challenge in testing general relativity (GR) with binary black hole gravitational wave detections is the inability to perform model-dependent tests due to the lack of merger waveforms in beyond-GR theories. In this study, we produce the fir