ﻻ يوجد ملخص باللغة العربية
We solve a weakly supervised regression problem. Under weakly we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources. The solution process requires to optimize a certain objective function (the loss function), which combines manifold regularization and low-rank matrix decomposition techniques. These low-rank approximations allow us to speed up all matrix calculations and reduce storage requirements. This is especially crucial for large datasets. Ensemble clustering is used for obtaining the co-association matrix, which we consider as the similarity matrix. The utilization of these techniques allows us to increase the quality and stability of the solution. In the numerical section, we applied the suggested method to artificial and real datasets using Monte-Carlo modeling.
This paper introduces new solvers for the computation of low-rank approximate solutions to large-scale linear problems, with a particular focus on the regularization of linear inverse problems. Although Krylov methods incorporating explicit projectio
In this work we propose to fit a sparse logistic regression model by a weakly convex regularized nonconvex optimization problem. The idea is based on the finding that a weakly convex function as an approximation of the $ell_0$ pseudo norm is able to
This paper studies a tensor-structured linear regression model with a scalar response variable and tensor-structured predictors, such that the regression parameters form a tensor of order $d$ (i.e., a $d$-fold multiway array) in $mathbb{R}^{n_1 times
For the high dimensional data representation, nonnegative tensor ring (NTR) decomposition equipped with manifold learning has become a promising model to exploit the multi-dimensional structure and extract the feature from tensor data. However, the e
We introduce in this work the normalizing field flows (NFF) for learning random fields from scattered measurements. More precisely, we construct a bijective transformation (a normalizing flow characterizing by neural networks) between a Gaussian rand