ﻻ يوجد ملخص باللغة العربية
In this work we propose to fit a sparse logistic regression model by a weakly convex regularized nonconvex optimization problem. The idea is based on the finding that a weakly convex function as an approximation of the $ell_0$ pseudo norm is able to better induce sparsity than the commonly used $ell_1$ norm. For a class of weakly convex sparsity inducing functions, we prove the nonconvexity of the corresponding sparse logistic regression problem, and study its local optimality conditions and the choice of the regularization parameter to exclude trivial solutions. Despite the nonconvexity, a method based on proximal gradient descent is used to solve the general weakly convex sparse logistic regression, and its convergence behavior is studied theoretically. Then the general framework is applied to a specific weakly convex function, and a necessary and sufficient local optimality condition is provided. The solution method is instantiated in this case as an iterative firm-shrinkage algorithm, and its effectiveness is demonstrated in numerical experiments by both randomly generated and real datasets.
Out of the rich family of generalized linear bandits, perhaps the most well studied ones are logisitc bandits that are used in problems with binary rewards: for instance, when the learner/agent tries to maximize the profit over a user that can select
We present ADMM-Softmax, an alternating direction method of multipliers (ADMM) for solving multinomial logistic regression (MLR) problems. Our method is geared toward supervised classification tasks with many examples and features. It decouples the n
We introduce a flexible family of fairness regularizers for (linear and logistic) regression problems. These regularizers all enjoy convexity, permitting fast optimization, and they span the rang from notions of group fairness to strong individual fa
We solve a weakly supervised regression problem. Under weakly we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources.
Support vector regression (SVR) is one of the most popular machine learning algorithms aiming to generate the optimal regression curve through maximizing the minimal margin of selected training samples, i.e., support vectors. Recent researchers revea