ﻻ يوجد ملخص باللغة العربية
For the high dimensional data representation, nonnegative tensor ring (NTR) decomposition equipped with manifold learning has become a promising model to exploit the multi-dimensional structure and extract the feature from tensor data. However, the existing methods such as graph regularized tensor ring decomposition (GNTR) only models the pair-wise similarities of objects. For tensor data with complex manifold structure, the graph can not exactly construct similarity relationships. In this paper, in order to effectively utilize the higher-dimensional and complicated similarities among objects, we introduce hypergraph to the framework of NTR to further enhance the feature extraction, upon which a hypergraph regularized nonnegative tensor ring decomposition (HGNTR) method is developed. To reduce the computational complexity and suppress the noise, we apply the low-rank approximation trick to accelerate HGNTR (called LraHGNTR). Our experimental results show that compared with other state-of-the-art algorithms, the proposed HGNTR and LraHGNTR can achieve higher performance in clustering tasks, in addition, LraHGNTR can greatly reduce running time without decreasing accuracy.
We present a general-purpose data compression algorithm, Regularized L21 Semi-NonNegative Matrix Factorization (L21 SNF). L21 SNF provides robust, parts-based compression applicable to mixed-sign data for which high fidelity, individualdata point rec
Most methods for dimensionality reduction are based on either tensor representation or local geometry learning. However, the tensor-based methods severely rely on the assumption of global and multilinear structures in high-dimensional data; and the m
Low-rank tensor completion recovers missing entries based on different tensor decompositions. Due to its outstanding performance in exploiting some higher-order data structure, low rank tensor ring has been applied in tensor completion. To further de
The epsilon alternating least squares ($epsilon$-ALS) is developed and analyzed for canonical polyadic decomposition (approximation) of a higher-order tensor where one or more of the factor matrices are assumed to be columnwisely orthonormal. It is s
This paper considers the completion problem for a tensor (also referred to as a multidimensional array) from limited sampling. Our greedy method is based on extending the low-rank approximation pursuit (LRAP) method for matrix completions to tensor c