ﻻ يوجد ملخص باللغة العربية
Fock and Goncharov introduced cluster ensembles, providing a framework for coordinates on varieties of surface representations into Lie groups, as well as a complete construction for groups of type $A_n$. Later, Zickert, Le, and Ip described, using differing methods, how to apply this framework for other Lie group types. Zickert also showed that this framework applies to triangulated $3$-manifolds. We present a complete, general construction, based on work of Fomin and Zelevinsky. In particular, we complete the picture for the remaining cases: Lie groups of types $F_4$, $E_6$, $E_7$, and $E_8$.
For a finite-type surface $mathfrak{S}$, we study a preferred basis for the commutative algebra $mathbb{C}[mathcal{X}_{mathrm{SL}_3(mathbb{C})}(mathfrak{S})]$ of regular functions on the $mathrm{SL}_3(mathbb{C})$-character variety, introduced by Siko
In a companion paper (arXiv 2011.01768) we constructed non-negative integer coordinates $Phi_mathcal{T}$ for a distinguished collection $mathcal{W}_{3, widehat{S}}$ of $mathrm{SL}_3$-webs on a finite-type punctured surface $widehat{S}$, depending on
We show that, in compact semisimple Lie groups and Lie algebras, any neighbourhood of the identity gets mapped, under the commutator map, to a neighbourhood of the identity.
Divergence functions of a metric space estimate the length of a path connecting two points $A$, $B$ at distance $le n$ avoiding a large enough ball around a third point $C$. We characterize groups with non-linear divergence functions as groups having
These notes grew out of our learning and applying the methods of Fock and Goncharov concerning moduli spaces of real projective structures on surfaces with ideal triangulations. We give a self-contained treatment of Fock and Goncharovs description of