ترغب بنشر مسار تعليمي؟ اضغط هنا

Tropical Fock-Goncharov coordinates for $mathrm{SL}_3$-webs on surfaces II: naturality

113   0   0.0 ( 0 )
 نشر من قبل Zhe Sun
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In a companion paper (arXiv 2011.01768) we constructed non-negative integer coordinates $Phi_mathcal{T}$ for a distinguished collection $mathcal{W}_{3, widehat{S}}$ of $mathrm{SL}_3$-webs on a finite-type punctured surface $widehat{S}$, depending on an ideal triangulation $mathcal{T}$ of $widehat{S}$. We prove that these coordinates are natural with respect to the choice of triangulation, in the sense that if a different triangulation $mathcal{T}^prime$ is chosen then the coordinate change map relating $Phi_mathcal{T}$ and $Phi_{mathcal{T}^prime}$ is a prescribed tropical cluster transformation. Moreover, when $widehat{S}=Box$ is an ideal square, we provide a topological geometric description of the Hilbert basis (in the sense of linear programming) of the non-negative integer cone $Phi_mathcal{T}(mathcal{W}_{3, Box}) subset mathbb{Z}_{geq 0}^{12}$, and we prove that this cone canonically decomposes into 42 sectors corresponding topologically to 42 families of $mathrm{SL}_3$-webs in the square.



قيم البحث

اقرأ أيضاً

For a finite-type surface $mathfrak{S}$, we study a preferred basis for the commutative algebra $mathbb{C}[mathcal{X}_{mathrm{SL}_3(mathbb{C})}(mathfrak{S})]$ of regular functions on the $mathrm{SL}_3(mathbb{C})$-character variety, introduced by Siko ra-Westbury. These basis elements come from the trace functions associated to certain tri-valent graphs embedded in the surface $mathfrak{S}$. We show that this basis can be naturally indexed by positive integer coordinates, defined by Knutson-Tao rhombus inequalities and modulo 3 congruence conditions. These coordinates are related, by the geometric theory of Fock-Goncharov, to the tropical points at infinity of the dual version of the character variety.
190 - S. Gilles 2021
Fock and Goncharov introduced cluster ensembles, providing a framework for coordinates on varieties of surface representations into Lie groups, as well as a complete construction for groups of type $A_n$. Later, Zickert, Le, and Ip described, using d iffering methods, how to apply this framework for other Lie group types. Zickert also showed that this framework applies to triangulated $3$-manifolds. We present a complete, general construction, based on work of Fomin and Zelevinsky. In particular, we complete the picture for the remaining cases: Lie groups of types $F_4$, $E_6$, $E_7$, and $E_8$.
These notes grew out of our learning and applying the methods of Fock and Goncharov concerning moduli spaces of real projective structures on surfaces with ideal triangulations. We give a self-contained treatment of Fock and Goncharovs description of the moduli space of framed marked properly convex projective structures with minimal or maximal ends, and deduce results of Marquis and Goldman as consequences. We also discuss the Poisson structure on moduli space and its relationship to Goldmans Poisson structure on the character variety.
For any cluster algebra whose underlying combinatorial data can be encoded by a bordered surface with marked points, we construct a geometric realization in terms of suitable decorated Teichmueller space of the surface. On the geometric side, this re quires opening the surface at each interior marked point into an additional geodesic boundary component. On the algebraic side, it relies on the notion of a non-normalized cluster algebra and the machinery of tropical lambda lengths. Our model allows for an arbitrary choice of coefficients which translates into a choice of a family of integral laminations on the surface. It provides an intrinsic interpretation of cluster variables as renormalized lambda lengths of arcs on the surface. Exchange relations are written in terms of the shear coordinates of the laminations, and are interpreted as generalized Ptolemy relations for lambda lengths. This approach gives alternative proofs for the main structural results from our previous paper, removing unnecessary assumptions on the surface.
152 - Zhe Sun 2015
The {em rank $n$ swapping algebra} is a Poisson algebra defined on the set of ordered pairs of points of the circle using linking numbers, whose geometric model is given by a certain subspace of $(mathbb{K}^n times mathbb{K}^{n*})^r/operatorname{GL}( n,mathbb{K})$. For any ideal triangulation of $D_k$---a disk with $k$ points on its boundary, using determinants, we find an injective Poisson algebra homomorphism from the fraction algebra generated by the Fock--Goncharov coordinates for $mathcal{X}_{operatorname{PGL}_n,D_k}$ to the rank $n$ swapping multifraction algebra for $r=kcdot(n-1)$ with respect to the (Atiyah--Bott--)Goldman Poisson bracket and the swapping bracket. This is the building block of the general surface case. Two such injective Poisson algebra homomorphisms related to two ideal triangulations $mathcal{T}$ and $mathcal{T}$ are compatible with each other under the flips.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا