ﻻ يوجد ملخص باللغة العربية
Divergence functions of a metric space estimate the length of a path connecting two points $A$, $B$ at distance $le n$ avoiding a large enough ball around a third point $C$. We characterize groups with non-linear divergence functions as groups having cut-points in their asymptotic cones. By Olshanskii-Osin-Sapir, that property is weaker than the property of having Morse (rank 1) quasi-geodesics. Using our characterization of Morse quasi-geodesics, we give a new proof of the theorem of Farb-Kaimanovich-Masur that states that mapping class groups cannot contain copies of irreducible lattices in semi-simple Lie groups of higher ranks. It also gives a generalization of the result of Birman-Lubotzky-McCarthy about solvable subgroups of mapping class groups not covered by the Tits alternative of Ivanov and McCarthy. We show that any group acting acylindrically on a simplicial tree or a locally compact hyperbolic graph always has many periodic Morse quasi-geodesics (i.e. Morse elements), so its divergence functions are never linear. We also show that the same result holds in many cases when the hyperbolic graph satisfies Bowditchs properties that are weaker than local compactness. This gives a new proof of Behrstocks result that every pseudo-Anosov element in a mapping class group is Morse. On the other hand, we conjecture that lattices in semi-simple Lie groups of higher rank always have linear divergence. We prove it in the case when the $mathbb{Q}$-rank is 1 and when the lattice is $SL_n(mathcal{O}_S)$ where $nge 3$, $S$ is a finite set of valuations of a number field $K$ including all infinite valuations, and $mathcal{O}_S$ is the corresponding ring of $S$-integers.
We show that, in compact semisimple Lie groups and Lie algebras, any neighbourhood of the identity gets mapped, under the commutator map, to a neighbourhood of the identity.
We obtain non-vanishing of group $L^p$-cohomology of Lie groups for $p$ large and when the degree is equal to the rank of the group. This applies both to semisimple and to some suitable solvable groups. In particular, it confirms that Gromovs questio
We prove that R. Thompson groups F, T, V have linear divergence functions.
We prove a true bootstrapping result for convergence groups acting on a Peano continuum. We give an example of a Kleinian group H which is the amalgamation of two closed hyperbolic surface groups along a simple closed curve. The limit set Lambda H is
Let $M$ be a compact surface without boundary, and $ngeq 2$. We analyse the quotient group $B_n(M)/Gamma_2(P_n(M))$ of the surface braid group $B_{n}(M)$ by the commutator subgroup $Gamma_2(P_n(M))$ of the pure braid group $P_{n}(M)$. If $M$ is diffe