ترغب بنشر مسار تعليمي؟ اضغط هنا

Noise-resistant Deep Metric Learning with Ranking-based Instance Selection

148   0   0.0 ( 0 )
 نشر من قبل Chang Liu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The existence of noisy labels in real-world data negatively impacts the performance of deep learning models. Although much research effort has been devoted to improving robustness to noisy labels in classification tasks, the problem of noisy labels in deep metric learning (DML) remains open. In this paper, we propose a noise-resistant training technique for DML, which we name Probabilistic Ranking-based Instance Selection with Memory (PRISM). PRISM identifies noisy data in a minibatch using average similarity against image features extracted by several previo



قيم البحث

اقرأ أيضاً

126 - Chang Liu , Han Yu , Boyang Li 2021
Noisy labels are commonly found in real-world data, which cause performance degradation of deep neural networks. Cleaning data manually is labour-intensive and time-consuming. Previous research mostly focuses on enhancing classification models agains t noisy labels, while the robustness of deep metric learning (DML) against noisy labels remains less well-explored. In this paper, we bridge this important gap by proposing Probabilistic Ranking-based Instance Selection with Memory (PRISM) approach for DML. PRISM calculates the probability of a label being clean, and filters out potentially noisy samples. Specifically, we propose three methods to calculate this probability: 1) Average Similarity Method (AvgSim), which calculates the average similarity between potentially noisy data and clean data; 2) Proxy Similarity Method (ProxySim), which replaces the centers maintained by AvgSim with the proxies trained by proxy-based method; and 3) von Mises-Fisher Distribution Similarity (vMF-Sim), which estimates a von Mises-Fisher distribution for each data class. With such a design, the proposed approach can deal with challenging DML situations in which the majority of the samples are noisy. Extensive experiments on both synthetic and real-world noisy dataset show that the proposed approach achieves up to 8.37% higher Precision@1 compared with the best performing state-of-the-art baseline approaches, within reasonable training time.
We propose a new method for semantic instance segmentation, by first computing how likely two pixels are to belong to the same object, and then by grouping similar pixels together. Our similarity metric is based on a deep, fully convolutional embeddi ng model. Our grouping method is based on selecting all points that are sufficiently similar to a set of seed points, chosen from a deep, fully convolutional scoring model. We show competitive results on the Pascal VOC instance segmentation benchmark.
Deep metric learning, which learns discriminative features to process image clustering and retrieval tasks, has attracted extensive attention in recent years. A number of deep metric learning methods, which ensure that similar examples are mapped clo se to each other and dissimilar examples are mapped farther apart, have been proposed to construct effective structures for loss functions and have shown promising results. In this paper, different from the approaches on learning the loss structures, we propose a robust SNR distance metric based on Signal-to-Noise Ratio (SNR) for measuring the similarity of image pairs for deep metric learning. By exploring the properties of our SNR distance metric from the view of geometry space and statistical theory, we analyze the properties of our metric and show that it can preserve the semantic similarity between image pairs, which well justify its suitability for deep metric learning. Compared with Euclidean distance metric, our SNR distance metric can further jointly reduce the intra-class distances and enlarge the inter-class distances for learned features. Leveraging our SNR distance metric, we propose Deep SNR-based Metric Learning (DSML) to generate discriminative feature embeddings. By extensive experiments on three widely adopted benchmarks, including CARS196, CUB200-2011 and CIFAR10, our DSML has shown its superiority over other state-of-the-art methods. Additionally, we extend our SNR distance metric to deep hashing learning, and conduct experiments on two benchmarks, including CIFAR10 and NUS-WIDE, to demonstrate the effectiveness and generality of our SNR distance metric.
Recent advances in bioimaging have provided scientists a superior high spatial-temporal resolution to observe dynamics of living cells as 3D volumetric videos. Unfortunately, the 3D biomedical video analysis is lagging, impeded by resource insensitiv e human curation using off-the-shelf 3D analytic tools. Herein, biologists often need to discard a considerable amount of rich 3D spatial information by compromising on 2D analysis via maximum intensity projection. Recently, pixel embedding-based cell instance segmentation and tracking provided a neat and generalizable computing paradigm for understanding cellular dynamics. In this work, we propose a novel spatial-temporal voxel-embedding (VoxelEmbed) based learning method to perform simultaneous cell instance segmenting and tracking on 3D volumetric video sequences. Our contribution is in four-fold: (1) The proposed voxel embedding generalizes the pixel embedding with 3D context information; (2) Present a simple multi-stream learning approach that allows effective spatial-temporal embedding; (3) Accomplished an end-to-end framework for one-stage 3D cell instance segmentation and tracking without heavy parameter tuning; (4) The proposed 3D quantification is memory efficient via a single GPU with 12 GB memory. We evaluate our VoxelEmbed method on four 3D datasets (with different cell types) from the ISBI Cell Tracking Challenge. The proposed VoxelEmbed method achieved consistent superior overall performance (OP) on two densely annotated datasets. The performance is also competitive on two sparsely annotated cohorts with 20.6% and 2% of data-set having segmentation annotations. The results demonstrate that the VoxelEmbed method is a generalizable and memory-efficient solution.
116 - Nian Liu , Long Li , Wangbo Zhao 2021
Conventional salient object detection models cannot differentiate the importance of different salient objects. Recently, two works have been proposed to detect saliency ranking by assigning different degrees of saliency to different objects. However, one of these models cannot differentiate object instances and the other focuses more on sequential attention shift order inference. In this paper, we investigate a practical problem setting that requires simultaneously segment salient instances and infer their relative saliency rank order. We present a novel unified model as the first end-to-end solution, where an improved Mask R-CNN is first used to segment salient instances and a saliency ranking branch is then added to infer the relative saliency. For relative saliency ranking, we build a new graph reasoning module by combining four graphs to incorporate the instance interaction relation, local contrast, global contrast, and a high-level semantic prior, respectively. A novel loss function is also proposed to effectively train the saliency ranking branch. Besides, a new dataset and an evaluation metric are proposed for this task, aiming at pushing forward this field of research. Finally, experimental results demonstrate that our proposed model is more effective than previous methods. We also show an example of its practical usage on adaptive image retargeting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا