ﻻ يوجد ملخص باللغة العربية
Conventional salient object detection models cannot differentiate the importance of different salient objects. Recently, two works have been proposed to detect saliency ranking by assigning different degrees of saliency to different objects. However, one of these models cannot differentiate object instances and the other focuses more on sequential attention shift order inference. In this paper, we investigate a practical problem setting that requires simultaneously segment salient instances and infer their relative saliency rank order. We present a novel unified model as the first end-to-end solution, where an improved Mask R-CNN is first used to segment salient instances and a saliency ranking branch is then added to infer the relative saliency. For relative saliency ranking, we build a new graph reasoning module by combining four graphs to incorporate the instance interaction relation, local contrast, global contrast, and a high-level semantic prior, respectively. A novel loss function is also proposed to effectively train the saliency ranking branch. Besides, a new dataset and an evaluation metric are proposed for this task, aiming at pushing forward this field of research. Finally, experimental results demonstrate that our proposed model is more effective than previous methods. We also show an example of its practical usage on adaptive image retargeting.
Salient object detection is a problem that has been considered in detail and textcolor{black}{many solutions have been proposed}. In this paper, we argue that work to date has addressed a problem that is relatively ill-posed. Specifically, there is n
The real human attention is an interactive activity between our visual system and our brain, using both low-level visual stimulus and high-level semantic information. Previous image salient object detection (SOD) works conduct their saliency predicti
The existence of noisy labels in real-world data negatively impacts the performance of deep learning models. Although much research effort has been devoted to improving robustness to noisy labels in classification tasks, the problem of noisy labels i
We propose a new method of instance-level microtubule (MT) tracking in time-lapse image series using recurrent attention. Our novel deep learning algorithm segments individual MTs at each frame. Segmentation results from successive frames are used to
Figures, such as bar charts, pie charts, and line plots, are widely used to convey important information in a concise format. They are usually human-friendly but difficult for computers to process automatically. In this work, we investigate the probl