ﻻ يوجد ملخص باللغة العربية
We propose a new method for semantic instance segmentation, by first computing how likely two pixels are to belong to the same object, and then by grouping similar pixels together. Our similarity metric is based on a deep, fully convolutional embedding model. Our grouping method is based on selecting all points that are sufficiently similar to a set of seed points, chosen from a deep, fully convolutional scoring model. We show competitive results on the Pascal VOC instance segmentation benchmark.
Deep Metric Learning (DML) is helpful in computer vision tasks. In this paper, we firstly introduce DML into image co-segmentation. We propose a novel Triplet loss for Image Segmentation, called IS-Triplet loss for short, and combine it with traditio
Most of the modern instance segmentation approaches fall into two categories: region-based approaches in which object bounding boxes are detected first and later used in cropping and segmenting instances; and keypoint-based approaches in which indivi
We present a weakly supervised instance segmentation algorithm based on deep community learning with multiple tasks. This task is formulated as a combination of weakly supervised object detection and semantic segmentation, where individual objects of
Instance Segmentation, which seeks to obtain both class and instance labels for each pixel in the input image, is a challenging task in computer vision. State-of-the-art algorithms often employ two separate stages, the first one generating object pro
The existence of noisy labels in real-world data negatively impacts the performance of deep learning models. Although much research effort has been devoted to improving robustness to noisy labels in classification tasks, the problem of noisy labels i