ﻻ يوجد ملخص باللغة العربية
The $ell$-deck of a graph $G$ is the multiset of all induced subgraphs of $G$ on $ell$ vertices. In 1976, Giles proved that any tree on $ngeq 6$ vertices can be reconstructed from its $ell$-deck for $ell geq n-2$. Our main theorem states that it is enough to have $ellgeq (8/9+o(1))n$, making substantial progress towards a conjecture of Nydl from 1990. In addition, we can recognise connectedness from the $ell$-deck if $ellgeq 9n/10$, and reconstruct the degree sequence from the $ell$-deck if $ellge sqrt{2nlog(2n)}$. All of these results are significant improvements on previous bounds.
In this paper we study the minimum number of reversals needed to transform a unicellular fatgraph into a tree. We consider reversals acting on boundary components, having the natural interpretation as gluing, slicing or half-flipping of vertices. Our
For non-negative integers $n$ and $k$ with $n ge k$, a {em $k$-minor} of a partition $lambda = [lambda_1, lambda_2, dots]$ of $n$ is a partition $mu = [mu_1, mu_2, dots]$ of $n-k$ such that $mu_i le lambda_i$ for all $i$. The multiset $widehat{M}_k(l
This paper completely characterizes the standard Young tableaux that can be reconstructed from their sets or multisets of $1$-minors. In particular, any standard Young tableau with at least $5$ entries can be reconstructed from its set of $1$-minors.
The modular decomposition of a symmetric map $deltacolon Xtimes X to Upsilon$ (or, equivalently, a set of symmetric binary relations, a 2-structure, or an edge-colored undirected graph) is a natural construction to capture key features of $delta$ in
In this paper, we study the parallel query complexity of reconstructing biological and digital phylogenetic trees from simple queries involving their nodes. This is motivated from computational biology, data protection, and computer security settings