This paper completely characterizes the standard Young tableaux that can be reconstructed from their sets or multisets of $1$-minors. In particular, any standard Young tableau with at least $5$ entries can be reconstructed from its set of $1$-minors.
In this paper, we propose a notion of colored Motzkin paths and establish a bijection between the $n$-cell standard Young tableaux (SYT) of bounded height and the colored Motzkin paths of length $n$. This result not only gives a lattice path interpre
tation of the standard Young tableaux but also reveals an unexpected intrinsic relation between the set of SYTs with at most $2d+1$ rows and the set of SYTs with at most 2d rows.
Let $mathcal{T}_3$ be the three-rowed strip. Recently Regev conjectured that the number of standard Young tableaux with $n-3$ entries in the skew three-rowed strip $mathcal{T}_3 / (2,1,0)$ is $m_{n-1}-m_{n-3}$, a difference of two Motzkin numbers. Th
is conjecture, together with hundreds of similar identities, were derived automatically and proved rigorously by Zeilberger via his powerful program and WZ method. It appears that each one is a linear combination of Motzkin numbers with constant coefficients. In this paper we will introduce a simple bijection between Motzkin paths and standard Young tableaux with at most three rows. With this bijection we answer Zeilbergers question affirmatively that there is a uniform way to construct bijective proofs for all of those identites.
We show that J_n, the Stanley-Reisner ideal of the n-cycle, has a free resolution supported on the (n-3)-dimensional simplicial associahedron A_n. This resolution is not minimal for n > 5; in this case the Betti numbers of J_n are strictly smaller th
an the f-vector of A_n. We show that in fact the Betti numbers of J_n are in bijection with the number of standard Young tableaux of shape (d+1, 2, 1^{n-d-3}). This complements the fact that the number of (d-1)-dimensional faces of A_n are given by the number of standard Young tableaux of (super)shape (d+1, d+1, 1^{n-d-3}); a bijective proof of this result was first provided by Stanley. An application of discrete Morse theory yields a cellular resolution of J_n that we show is minimal at the first syzygy. We furthermore exhibit a simple involution on the set of associahedron tableaux with fixed points given by the Betti tableaux, suggesting a Morse matching and in particular a poset structure on these objects.
In 1976, King defined certain tableaux model, called King tableaux in this paper, counting weight multiplicities of irreducible representation of the symplectic group $Sp(2m)$ for a given dominant weight. Since Kashiwara defined crystals, it is an op
en problem to provide a crystal structure on King tableaux. In this paper, we present crystal structures on King tableaux and semistandard oscillating tableaux. The semistandard oscillating tableaux naturally appear as $Q$-tableaux in the symplectic version of RSK algorithms. As an application, we discuss Littlewood-Richardson coefficients for $Sp(2m)$ in terms of semistandard oscillating tableaux.
Motivated by Stanleys results in cite{St02}, we generalize the rank of a partition $lambda$ to the rank of a shifted partition $S(lambda)$. We show that the number of bars required in a minimal bar tableau of $S(lambda)$ is max$(o, e + (ell(lambda) m
athrm{mod} 2))$, where $o$ and $e$ are the number of odd and even rows of $lambda$. As a consequence we show that the irreducible projective characters of $S_n$ vanish on certain conjugacy classes. Another corollary is a lower bound on the degree of the terms in the expansion of Schurs $Q_{lambda}$ symmetric functions in terms of the power sum symmetric functions.