ﻻ يوجد ملخص باللغة العربية
In this paper, we study the parallel query complexity of reconstructing biological and digital phylogenetic trees from simple queries involving their nodes. This is motivated from computational biology, data protection, and computer security settings, which can be abstracted in terms of two parties, a responder, Alice, who must correctly answer queries of a given type regarding a degree-d tree, T, and a querier, Bob, who issues batches of queries, with each query in a batch being independent of the others, so as to eventually infer the structure of T. We show that a querier can efficiently reconstruct an n-node degree-d tree, T, with a logarithmic number of rounds and quasilinear number of queries, with high probability, for various types of queries, including relative-distance queries and path queries. Our results are all asymptotically optimal and improve the asymptotic (sequential) query complexity for one of the problems we study. Moreover, through an experimental analysis using both real-world and synthetic data, we provide empirical evidence that our algorithms provide significant parallel speedups while also improving the total query complexities for the problems we study.
Recently Avis and Jordan have demonstrated the efficiency of a simple technique called budgeting for the parallelization of a number of tree search algorithms. The idea is to limit the amount of work that a processor performs before it terminates its
Best match graphs (BMG) are a key intermediate in graph-based orthology detection and contain a large amount of information on the gene tree. We provide a near-cubic algorithm to determine whether a BMG is binary-explainable, i.e., whether it can be
We prove several results about the complexity of the role colouring problem. A role colouring of a graph $G$ is an assignment of colours to the vertices of $G$ such that two vertices of the same colour have identical sets of colours in their neighbou
It was recently shown that a version of the greedy algorithm gives a construction of fault-tolerant spanners that is size-optimal, at least for vertex faults. However, the algorithm to construct this spanner is not polynomial-time, and the best-known
Sequences set is a mathematical model used in many applications. As the number of the sequences becomes larger, single sequence set model is not appropriate for the rapidly increasing problem sizes. For example, more and more text processing applicat