ﻻ يوجد ملخص باللغة العربية
To date, at least three comets -- 2I/Borisov, C/2016 R2 (PanSTARRS), and C/2009 P1 (Garradd) -- have been observed to have unusually high CO concentrations compared to water. We attempt to explain these observations by modeling the effect of drifting solid (ice and dust) material on the ice compositions in protoplanetary disks. We find that, independent of the exact disk model parameters, we always obtain a region of enhanced ice-phase CO/H2O that spreads out in radius over time. The inner edge of this feature coincides with the CO snowline. Almost every model achieves at least CO/H2O of unity, and one model reaches a CO/H2O ratio > 10. After running our simulations for 1 Myr, an average of 40% of the disk ice mass contains more CO than H2O ice. In light of this, a population of CO ice enhanced planetesimals are likely to generally form in the outer regions of disks, and we speculate that the aforementioned CO-rich comets may be more common, both in our own Solar System and in extrasolar systems, than previously expected.
Comets are remnants of the icy planetesimals that formed beyond the ice line in the Solar Nebula. Growing from micrometre-sized dust and ice particles to km-sized objects is, however, difficult because of growth barriers and time scale constraints. T
We assess a physically feasible explanation for the low number of discovered (near-)grazing planetary transits through all ground and space based transit surveys. We performed simulations to generate the synthetic distribution of detectable planets b
Recent ALMA observations present mounting evidence for the presence of exocometary gas released within Kuiper belt analogues around nearby main sequence stars. This represents a unique opportunity to study their ice reservoir at the younger ages when
The gas dissipation from a protoplanetary disk is one of the key processes affecting planet formation, and it is widely accepted that it happens on timescales of a few million years for disks around single stars. Over the last years, several protopla
Oumuamua was discovered passing through our Solar System on a hyperbolic orbit. It presents an apparent contradiction, with colors similar to those of volatile-rich Solar System bodies but with no visible outgassing or activity during its close appro