ﻻ يوجد ملخص باللغة العربية
Oumuamua was discovered passing through our Solar System on a hyperbolic orbit. It presents an apparent contradiction, with colors similar to those of volatile-rich Solar System bodies but with no visible outgassing or activity during its close approach to the Sun. Here we show that this contradiction can be explained by the dynamics of planetesimal ejection by giant planets. We propose that Oumuamua is an extinct fragment of a comet-like planetesimal born in a planet-forming disk that also formed Neptune- to Jupiter-mass giant planets. On its pathway to ejection Oumuamuas parent body underwent a close encounter with a giant planet and was tidally disrupted into small pieces, similar to comet Shoemaker-Levy 9s disruption after passing close to Jupiter. We use dynamical simulations to show that 0.1-1% of cometary planetesimals undergo disruptive encounters prior to ejection. Rocky asteroidal planetesimals are unlikely to disrupt due to their higher densities. After disruption, the bulk of fragments undergo enough close passages to their host stars to lose their surface volatiles and become extinct. Planetesimal fragments such as Oumuamua contain little of the mass in the population of interstellar objects but dominate by number. Our model makes predictions that will be tested in the coming decade by LSST.
Oumuamua, the first bona-fide interstellar planetesimal, was discovered passing through our Solar System on a hyperbolic orbit. This object was likely dynamically ejected from an extrasolar planetary system after a series of close encounters with gas
1I/Oumuamua is the first interstellar object observed passing through the Solar System. Understanding the nature of these objects will provide crucial information about the formation and evolution of planetary systems, and the chemodynamical evolutio
The origin of the interstellar object 1I/Oumuamua, has defied explanation. In a companion paper (Jackson & Desch, 2021), we show that a body of N2 ice with axes 45 m x 44 m x 7.5 m at the time of observation would be consistent with its albedo, non-g
The origin of the interstellar object 1I/Oumuamua has defied explanation. We perform calculations of the non-gravitational acceleration that would be experienced by bodies composed of a range of different ices and demonstrate that a body composed of
The age of iron meteorites implies that accretion of protoplanets began during the first millions of years of the solar system. Due to the heat generated by 26Al decay, many early protoplanets were fully differentiated with an igneous crust produced