ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of exocometary CO within the 440 Myr-old Fomalhaut belt: a similar CO+CO$_2$ ice abundance in exocomets and Solar System comets

274   0   0.0 ( 0 )
 نشر من قبل Luca Matr\\`a
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent ALMA observations present mounting evidence for the presence of exocometary gas released within Kuiper belt analogues around nearby main sequence stars. This represents a unique opportunity to study their ice reservoir at the younger ages when volatile delivery to planets is most likely to occur. We here present the detection of CO J=2-1 emission co-located with dust emission from the cometary belt in the 440 Myr-old Fomalhaut system. Through spectro-spatial filtering, we achieve a 5.4$sigma$ detection and determine that the rings sky-projected rotation axis matches that of the star. The CO mass derived ($0.65-42 times10^{-7}$ M$_{oplus}$) is the lowest of any circumstellar disk detected to date, and must be of exocometary origin. Using a steady state model, we estimate the CO+CO$_2$ mass fraction of exocomets around Fomalhaut to be between 4.6-76%, consistent with Solar System comets and the two other belts known to host exocometary gas. This is the first indication of a similarity in cometary compositions across planetary systems that may be linked to their formation scenario and is consistent with direct ISM inheritance. In addition, we find tentative evidence that $(49pm 27)$% of the detected flux originates from a region near the eccentric belts pericentre. If confirmed, the latter may be explained through a recent impact event or CO pericentre glow due to exocometary release within a steady state collisional cascade. In the latter scenario, we show how the azimuthal dependence of the CO release rate leads to asymmetries in gas observations of eccentric exocometary belts.



قيم البحث

اقرأ أيضاً

Millimeter observations of CO gas in planetesimal belts show a high detection rate around A stars, but few detections for later type stars. We present the first CO detection in a planetesimal belt around an M star, TWA 7. The optically thin CO (J=3-2 ) emission is co-located with previously identified dust emission from the belt, and the emission velocity structure is consistent with Keplerian rotation around the central star. The detected CO is not well shielded against photodissociation, and must thus be continuously replenished by gas release from exocomets within the belt. We analyze in detail the process of exocometary gas release and destruction around young M dwarfs and how this process compares to earlier type stars. Taking these differences into account, we find that CO generation through exocometary gas release naturally explains the increasing CO detection rates with stellar luminosity, mostly because the CO production rate from the collisional cascade is directly proportional to stellar luminosity. More luminous stars will therefore on average host more massive (and hence more easily detectable) exocometary CO disks, leading to the higher detection rates observed. The current CO detection rates are consistent with a ubiquitous release of exocometary gas in planetesimal belts, independent of spectral type.
Activity of most comets near the Sun is dominated by sublimation of frozen water, the most abundant ice in comets. Some comets, however, are active well beyond the water-ice sublimation limit of ~3 AU. Three bodies dominate the observational record a nd modeling efforts for distantly active comets: the long-period comet C/1995 O1 Hale-Bopp and the short-period comets (with Centaur orbits) 29P/Schwassmann Wachmann 1 and 2060 Chiron. We summarize what is known about these three objects emphasizing their gaseous comae. We calculate their CN/CO and CO2/CO production rate ratios from the literature and discuss implications. Using our own data we derive CO production rates for all three objects, in order to examine a correlation between gas production and different orbital histories and/or size. We find that orbital history does not appear to play a significant role in explaining 29Ps CO production rates. 29P outproduces Hale-Bopp at the same heliocentric distance, even though it has been subjected to much more solar heating. Previous modeling work on such objects predicts that 29P should have been de-volatilized over a fresher comet like Hale-Bopp. This may point to 29P having a different orbital history than current models predict, with its current orbit acquired more recently. On the other hand, Chirons CO measurements are consistent with it being significantly depleted over its original state, perhaps due to increased radiogenic heating made possible by its much larger size or its higher processing due to orbital history. Observed spectral line profiles are consistent with development and sublimation of icy grains at about 5-6 AU for 29P and Hale-Bopp, and this is probably a common feature in distantly active comets, and an important source of volatiles for all comets within 5 AU. In contrast, the narrow CO line profiles indicate a nuclear, and not extended, origin for CO beyond ~4 AU.
Exocomets are small bodies releasing gas and dust which orbit stars other than the Sun. Their existence was first inferred from the detection of variable absorption features in stellar spectra in the late 1980s using spectroscopy. More recently, they have been detected through photometric transits from space, and through far-IR/mm gas emission within debris disks. As (exo)comets are considered to contain the most pristine material accessible in stellar systems, they hold the potential to give us information about early stage formation and evolution conditions of extra Solar Systems. In the Solar System, comets carry the physical and chemical memory of the protoplanetary disk environment where they formed, providing relevant information on processes in the primordial solar nebula. The aim of this paper is to compare essential compositional properties between Solar System comets and exocomets. The paper aims to highlight commonalities and to discuss differences which may aid the communication between the involved research communities and perhaps also avoid misconceptions. Exocomets likely vary in their composition depending on their formation environment like Solar System comets do, and since exocomets are not resolved spatially, they pose a challenge when comparing them to high fidelity observations of Solar System comets. Observations of gas around main sequence stars, spectroscopic observations of polluted white dwarf atmospheres and spectroscopic observations of transiting exocomets suggest that exocomets may show compositional similarities with Solar System comets. The recent interstellar visitor 2I/Borisov showed gas, dust and nuclear properties similar to that of Solar System comets. This raises the tantalising prospect that observations of interstellar comets may help bridge the fields of exocomet and Solar System comets.
Planet atmosphere and hydrosphere compositions are fundamentally set by accretion of volatiles, and therefore by the division of volatiles between gas and solids in planet-forming disks. For hyper-volatiles such as CO, this division is regulated by a combination of binding energies, and by the ability of other ice components to entrap. Water ice is known for its ability to trap CO and other volatile species. In this study we explore whether another common interstellar and cometary ice component, CO2, is able to trap CO as well. We measure entrapment of CO molecules in CO2 ice through temperature programmed desorption (TPD) experiments on CO2:CO ice mixtures. We find that CO2 ice traps CO with a typical efficiency of 40-60% of the initially deposited CO molecules for a range of ice thicknesses between 7 and 50ML, and ice mixture ratios between 1:1 and 9:1. The entrapment efficiency increases with ice thickness and CO dilution. We also run analogous H2O:CO experiments and find that under comparable experimental conditions CO2 ice entraps CO more efficiently than H2O ice up to the onset of CO2 desorption at ~70K. We speculate that this may be due to different ice restructuring dynamics in H2O and CO2 ices around the CO desorption temperature. Importantly, the ability of CO2 to entrap CO may change the expected division between gas and solids for CO and other hyper-volatiles exterior to the CO2 snowline during planet formation.
170 - L. Matr`a , O. Panic , M. C. Wyatt 2014
In recent years, gas has been observed in an increasing number of debris discs, though its nature remains to be determined. Here, we analyse CO molecular excitation in optically thin debris discs, and search ALMA Cycle-0 data for CO J=3-2 emission in the Fomalhaut ring. No significant line emission is observed; we set a 3-$sigma$ upper limit on the integrated line flux of 0.16 Jy km s$^{-1}$. We show a significant dependency of the CO excitation on the density of collisional partners $n$, on the gas kinetic temperature $T_k$ and on the ambient radiation field $J$, suggesting that assumptions widely used for protoplanetary discs (e.g. LTE) do not necessarily apply to their low density debris counterparts. When applied to the Fomalhaut ring, we consider a primordial origin scenario where H$_2$ dominates collisional excitation of CO, and a secondary origin scenario dominated by e$^-$ and H$_2$O. In either scenario, we obtain a strict upper limit on the CO mass of 4.9 $times$ 10$^{-4}$ M$_{oplus}$. This arises in the non-LTE regime, where the excitation of the molecule is determined solely by the well-known radiation field. In the secondary scenario, assuming any CO present to be in steady state allows us to set an upper limit of $sim$55% on the CO/H$_2$O ice ratio in the parent planetesimals. This could drop to $sim$3% if LTE applies, covering the range observed in Solar System comets (0.4-30%). Finally, in light of our analysis, we present prospects for CO detection and characterisation in debris discs with ALMA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا