ﻻ يوجد ملخص باللغة العربية
Recent ALMA observations present mounting evidence for the presence of exocometary gas released within Kuiper belt analogues around nearby main sequence stars. This represents a unique opportunity to study their ice reservoir at the younger ages when volatile delivery to planets is most likely to occur. We here present the detection of CO J=2-1 emission co-located with dust emission from the cometary belt in the 440 Myr-old Fomalhaut system. Through spectro-spatial filtering, we achieve a 5.4$sigma$ detection and determine that the rings sky-projected rotation axis matches that of the star. The CO mass derived ($0.65-42 times10^{-7}$ M$_{oplus}$) is the lowest of any circumstellar disk detected to date, and must be of exocometary origin. Using a steady state model, we estimate the CO+CO$_2$ mass fraction of exocomets around Fomalhaut to be between 4.6-76%, consistent with Solar System comets and the two other belts known to host exocometary gas. This is the first indication of a similarity in cometary compositions across planetary systems that may be linked to their formation scenario and is consistent with direct ISM inheritance. In addition, we find tentative evidence that $(49pm 27)$% of the detected flux originates from a region near the eccentric belts pericentre. If confirmed, the latter may be explained through a recent impact event or CO pericentre glow due to exocometary release within a steady state collisional cascade. In the latter scenario, we show how the azimuthal dependence of the CO release rate leads to asymmetries in gas observations of eccentric exocometary belts.
Millimeter observations of CO gas in planetesimal belts show a high detection rate around A stars, but few detections for later type stars. We present the first CO detection in a planetesimal belt around an M star, TWA 7. The optically thin CO (J=3-2
Activity of most comets near the Sun is dominated by sublimation of frozen water, the most abundant ice in comets. Some comets, however, are active well beyond the water-ice sublimation limit of ~3 AU. Three bodies dominate the observational record a
Exocomets are small bodies releasing gas and dust which orbit stars other than the Sun. Their existence was first inferred from the detection of variable absorption features in stellar spectra in the late 1980s using spectroscopy. More recently, they
Planet atmosphere and hydrosphere compositions are fundamentally set by accretion of volatiles, and therefore by the division of volatiles between gas and solids in planet-forming disks. For hyper-volatiles such as CO, this division is regulated by a
In recent years, gas has been observed in an increasing number of debris discs, though its nature remains to be determined. Here, we analyse CO molecular excitation in optically thin debris discs, and search ALMA Cycle-0 data for CO J=3-2 emission in