ﻻ يوجد ملخص باللغة العربية
Consider two high-dimensional random vectors $widetilde{mathbf x}inmathbb R^p$ and $widetilde{mathbf y}inmathbb R^q$ with finite rank correlations. More precisely, suppose that $widetilde{mathbf x}=mathbf x+Amathbf z$ and $widetilde{mathbf y}=mathbf y+Bmathbf z$, for independent random vectors $mathbf xinmathbb R^p$, $mathbf yinmathbb R^q$ and $mathbf zinmathbb R^r$ with iid entries of mean 0 and variance 1, and two deterministic matrices $Ainmathbb R^{ptimes r}$ and $Binmathbb R^{qtimes r}$ . With $n$ iid observations of $(widetilde{mathbf x},widetilde{mathbf y})$, we study the sample canonical correlations between them. In this paper, we focus on the high-dimensional setting with a rank-$r$ correlation. Let $t_1gecdotsge t_r$ be the squares of the population canonical correlation coefficients (CCC) between $widetilde{mathbf x}$ and $widetilde{mathbf y}$, and $widetildelambda_1gecdotsgewidetildelambda_r$ be the squares of the largest $r$ sample CCC. Under certain moment assumptions on the entries of $mathbf x$, $mathbf y$ and $mathbf z$, we show that there exists a threshold $t_cin(0, 1)$ such that if $t_i>t_c$, then $sqrt{n}(widetildelambda_i-theta_i)$ converges in law to a centered normal distribution, where $theta_i>lambda_+$ is a fixed outlier location determined by $t_i$. Our results extend the ones in [4] for Gaussian vectors. Moreover, we find that the variance of the limiting distribution of $sqrt{n}(widetildelambda_i-theta_i)$ also depends on the fourth cumulants of the entries of $mathbf x$, $mathbf y$ and $mathbf z$, a phenomenon that cannot be observed in the Gaussian case.
Consider a normal vector $mathbf{z}=(mathbf{x},mathbf{y})$, consisting of two sub-vectors $mathbf{x}$ and $mathbf{y}$ with dimensions $p$ and $q$ respectively. With $n$ independent observations of $mathbf{z}$ at hand, we study the correlation between
Consider a Gaussian vector $mathbf{z}=(mathbf{x},mathbf{y})$, consisting of two sub-vectors $mathbf{x}$ and $mathbf{y}$ with dimensions $p$ and $q$ respectively, where both $p$ and $q$ are proportional to the sample size $n$. Denote by $Sigma_{mathbf
Let ${X}_{k}=(x_{k1}, cdots, x_{kp}), k=1,cdots,n$, be a random sample of size $n$ coming from a $p$-dimensional population. For a fixed integer $mgeq 2$, consider a hypercubic random tensor $mathbf{{T}}$ of $m$-th order and rank $n$ with begin{eqnar
Consider a $p$-dimensional population ${mathbf x} inmathbb{R}^p$ with iid coordinates in the domain of attraction of a stable distribution with index $alphain (0,2)$. Since the variance of ${mathbf x}$ is infinite, the sample covariance matrix ${math
In this article we prove three fundamental types of limit theorems for the $q$-norm of random vectors chosen at random in an $ell_p^n$-ball in high dimensions. We obtain a central limit theorem, a moderate deviations as well as a large deviations pri