ترغب بنشر مسار تعليمي؟ اضغط هنا

Canonical correlation coefficients of high-dimensional normal vectors: finite rank case

145   0   0.0 ( 0 )
 نشر من قبل Zhigang Bao
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Consider a normal vector $mathbf{z}=(mathbf{x},mathbf{y})$, consisting of two sub-vectors $mathbf{x}$ and $mathbf{y}$ with dimensions $p$ and $q$ respectively. With $n$ independent observations of $mathbf{z}$ at hand, we study the correlation between $mathbf{x}$ and $mathbf{y}$, from the perspective of the Canonical Correlation Analysis, under the high-dimensional setting: both $p$ and $q$ are proportional to the sample size $n$. In this paper, we focus on the case that $Sigma_{mathbf{x}mathbf{y}}$ is of finite rank $k$, i.e. there are $k$ nonzero canonical correlation coefficients, whose squares are denoted by $r_1geqcdotsgeq r_k>0$. Under the additional assumptions $(p+q)/nto yin (0,1)$ and $p/q otto 1$, we study the sample counterparts of $r_i,i=1,ldots,k$, i.e. the largest k eigenvalues of the sample canonical correlation matrix $S_{mathbf{x}mathbf{x}}^{-1}S_{mathbf{x}mathbf{y}}S_{mathbf{y}mathbf{y}}^{-1}S_{mathbf{y}mathbf{x}}$, namely $lambda_1geqcdotsgeq lambda_k$. We show that there exists a threshold $r_cin(0,1)$, such that for each $iin{1,ldots,k}$, when $r_ileq r_c$, $lambda_i$ converges almost surely to the right edge of the limiting spectral distribution of the sample canonical correlation matrix, denoted by $d_r$. When $r_i>r_c$, $lambda_i$ possesses an almost sure limit in $(d_r,1]$, from which we can recover $r_i$ in turn, thus provide an estimate of the latter in the high-dimensional scenario.



قيم البحث

اقرأ أيضاً

Consider a Gaussian vector $mathbf{z}=(mathbf{x},mathbf{y})$, consisting of two sub-vectors $mathbf{x}$ and $mathbf{y}$ with dimensions $p$ and $q$ respectively, where both $p$ and $q$ are proportional to the sample size $n$. Denote by $Sigma_{mathbf {u}mathbf{v}}$ the population cross-covariance matrix of random vectors $mathbf{u}$ and $mathbf{v}$, and denote by $S_{mathbf{u}mathbf{v}}$ the sample counterpart. The canonical correlation coefficients between $mathbf{x}$ and $mathbf{y}$ are known as the square roots of the nonzero eigenvalues of the canonical correlation matrix $Sigma_{mathbf{x}mathbf{x}}^{-1}Sigma_{mathbf{x}mathbf{y}}Sigma_{mathbf{y}mathbf{y}}^{-1}Sigma_{mathbf{y}mathbf{x}}$. In this paper, we focus on the case that $Sigma_{mathbf{x}mathbf{y}}$ is of finite rank $k$, i.e. there are $k$ nonzero canonical correlation coefficients, whose squares are denoted by $r_1geqcdotsgeq r_k>0$. We study the sample counterparts of $r_i,i=1,ldots,k$, i.e. the largest $k$ eigenvalues of the sample canonical correlation matrix $S_{mathbf{x}mathbf{x}}^{-1}S_{mathbf{x}mathbf{y}}S_{mathbf{y}mathbf{y}}^{-1}S_{mathbf{y}mathbf{x}}$, denoted by $lambda_1geqcdotsgeq lambda_k$. We show that there exists a threshold $r_cin(0,1)$, such that for each $iin{1,ldots,k}$, when $r_ileq r_c$, $lambda_i$ converges almost surely to the right edge of the limiting spectral distribution of the sample canonical correlation matrix, denoted by $d_{+}$. When $r_i>r_c$, $lambda_i$ possesses an almost sure limit in $(d_{+},1]$. We also obtain the limiting distribution of $lambda_i$s under appropriate normalization. Specifically, $lambda_i$ possesses Gaussian type fluctuation if $r_i>r_c$, and follows Tracy-Widom distribution if $r_i<r_c$. Some applications of our results are also discussed.
In this paper new tests for the independence of two high-dimensional vectors are investigated. We consider the case where the dimension of the vectors increases with the sample size and propose multivariate analysis of variance-type statistics for th e hypothesis of a block diagonal covariance matrix. The asymptotic properties of the new test statistics are investigated under the null hypothesis and the alternative hypothesis using random matrix theory. For this purpose we study the weak convergence of linear spectral statistics of central and (conditionally) non-central Fisher matrices. In particular, a central limit theorem for linear spectral statistics of large dimensional (conditionally) non-central Fisher matrices is derived which is then used to analyse the power of the tests under the alternative. The theoretical results are illustrated by means of a simulation study where we also compare the new tests with several alternative, in particular with the commonly used corrected likelihood ratio test. It is demonstrated that the latter test does not keep its nominal level, if the dimension of one sub-vector is relatively small compared to the dimension of the other sub-vector. On the other hand the tests proposed in this paper provide a reasonable approximation of the nominal level in such situations. Moreover, we observe that one of the proposed tests is most powerful under a variety of correlation scenarios.
77 - Fan Yang 2021
Consider two high-dimensional random vectors $widetilde{mathbf x}inmathbb R^p$ and $widetilde{mathbf y}inmathbb R^q$ with finite rank correlations. More precisely, suppose that $widetilde{mathbf x}=mathbf x+Amathbf z$ and $widetilde{mathbf y}=mathbf y+Bmathbf z$, for independent random vectors $mathbf xinmathbb R^p$, $mathbf yinmathbb R^q$ and $mathbf zinmathbb R^r$ with iid entries of mean 0 and variance 1, and two deterministic matrices $Ainmathbb R^{ptimes r}$ and $Binmathbb R^{qtimes r}$ . With $n$ iid observations of $(widetilde{mathbf x},widetilde{mathbf y})$, we study the sample canonical correlations between them. In this paper, we focus on the high-dimensional setting with a rank-$r$ correlation. Let $t_1gecdotsge t_r$ be the squares of the population canonical correlation coefficients (CCC) between $widetilde{mathbf x}$ and $widetilde{mathbf y}$, and $widetildelambda_1gecdotsgewidetildelambda_r$ be the squares of the largest $r$ sample CCC. Under certain moment assumptions on the entries of $mathbf x$, $mathbf y$ and $mathbf z$, we show that there exists a threshold $t_cin(0, 1)$ such that if $t_i>t_c$, then $sqrt{n}(widetildelambda_i-theta_i)$ converges in law to a centered normal distribution, where $theta_i>lambda_+$ is a fixed outlier location determined by $t_i$. Our results extend the ones in [4] for Gaussian vectors. Moreover, we find that the variance of the limiting distribution of $sqrt{n}(widetildelambda_i-theta_i)$ also depends on the fourth cumulants of the entries of $mathbf x$, $mathbf y$ and $mathbf z$, a phenomenon that cannot be observed in the Gaussian case.
This paper proposes a new statistic to test independence between two high dimensional random vectors ${mathbf{X}}:p_1times1$ and ${mathbf{Y}}:p_2times1$. The proposed statistic is based on the sum of regularized sample canonical correlation coefficie nts of ${mathbf{X}}$ and ${mathbf{Y}}$. The asymptotic distribution of the statistic under the null hypothesis is established as a corollary of general central limit theorems (CLT) for the linear statistics of classical and regularized sample canonical correlation coefficients when $p_1$ and $p_2$ are both comparable to the sample size $n$. As applications of the developed independence test, various types of dependent structures, such as factor models, ARCH models and a general uncorrelated but dependent case, etc., are investigated by simulations. As an empirical application, cross-sectional dependence of daily stock returns of companies between different sections in the New York Stock Exchange (NYSE) is detected by the proposed test.
Distance correlation has become an increasingly popular tool for detecting the nonlinear dependence between a pair of potentially high-dimensional random vectors. Most existing works have explored its asymptotic distributions under the null hypothesi s of independence between the two random vectors when only the sample size or the dimensionality diverges. Yet its asymptotic null distribution for the more realistic setting when both sample size and dimensionality diverge in the full range remains largely underdeveloped. In this paper, we fill such a gap and develop central limit theorems and associated rates of convergence for a rescaled test statistic based on the bias-corrected distance correlation in high dimensions under some mild regularity conditions and the null hypothesis. Our new theoretical results reveal an interesting phenomenon of blessing of dimensionality for high-dimensional distance correlation inference in the sense that the accuracy of normal approximation can increase with dimensionality. Moreover, we provide a general theory on the power analysis under the alternative hypothesis of dependence, and further justify the capability of the rescaled distance correlation in capturing the pure nonlinear dependency under moderately high dimensionality for a certain type of alternative hypothesis. The theoretical results and finite-sample performance of the rescaled statistic are illustrated with several simulation examples and a blockchain application.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا