ﻻ يوجد ملخص باللغة العربية
In this article we prove three fundamental types of limit theorems for the $q$-norm of random vectors chosen at random in an $ell_p^n$-ball in high dimensions. We obtain a central limit theorem, a moderate deviations as well as a large deviations principle when the underlying distribution of the random vectors belongs to a general class introduced by Barthe, Guedon, Mendelson, and Naor. It includes the normalized volume and the cone probability measure as well as projections of these measures as special cases. Two new applications to random and non-random projections of $ell_p^n$-balls to lower-dimensional subspaces are discussed as well. The text is a continuation of [Kabluchko, Prochno, Thale: High-dimensional limit theorems for random vectors in $ell_p^n$-balls, Commun. Contemp. Math. (2019)].
Accurate estimation of tail probabilities of projections of high-dimensional probability measures is of relevance in high-dimensional statistics and asymptotic geometric analysis. For fixed $p in (1,infty)$, let $(X^{(n,p)})$ and $(theta^n)$ be indep
In this paper, we study the asymptotic thin-shell width concentration for random vectors uniformly distributed in Orlicz balls. We provide both asymptotic upper and lower bounds on the probability of such a random vector $X_n$ being in a thin shell o
Let $r=r(n)$ be a sequence of integers such that $rleq n$ and let $X_1,ldots,X_{r+1}$ be independent random points distributed according to the Gaussian, the Beta or the spherical distribution on $mathbb{R}^n$. Limit theorems for the log-volume and t
We obtain explicit error bounds for the $d$-dimensional normal approximation on hyperrectangles for a random vector that has a Stein kernel, or admits an exchangeable pair coupling, or is a non-linear statistic of independent random variables or a su
We consider the branching process in random environment ${Z_n}_{ngeq 0}$, which is a~population growth process where individuals reproduce independently of each other with the reproduction law randomly picked at each generation. We focus on the super