ﻻ يوجد ملخص باللغة العربية
This paper develops emph{iterative Covariance Regulation} (iCR), a novel method for active exploration and mapping for a mobile robot equipped with on-board sensors. The problem is posed as optimal control over the $SE(3)$ pose kinematics of the robot to minimize the differential entropy of the map conditioned the potential sensor observations. We introduce a differentiable field of view formulation, and derive iCR via the gradient descent method to iteratively update an open-loop control sequence in continuous space so that the covariance of the map estimate is minimized. We demonstrate autonomous exploration and uncertainty reduction in simulated occupancy grid environments.
When manipulating three-dimensional data, it is possible to ensure that rotational and translational symmetries are respected by applying so-called SE(3)-equivariant models. Protein structure prediction is a prominent example of a task which displays
Robotic exploration under uncertain environments is challenging when optical information is not available. In this paper, we propose an autonomous solution of exploring an unknown task space based on tactile sensing alone. We first designed a whisker
In addition to conventional ground rovers, the Mars 2020 mission will send a helicopter to Mars. The copters high-resolution data helps the rover to identify small hazards such as steps and pointy rocks, as well as providing rich textual information
This paper presents a state and state-input constrained variant of the discrete-time iterative Linear Quadratic Regulator (iLQR) algorithm, with linear time-complexity in the number of time steps. The approach is based on a projection of the control
Imitation learning (IL) is a frequently used approach for data-efficient policy learning. Many IL methods, such as Dataset Aggregation (DAgger), combat challenges like distributional shift by interacting with oracular experts. Unfortunately, assuming