ﻻ يوجد ملخص باللغة العربية
This paper presents a state and state-input constrained variant of the discrete-time iterative Linear Quadratic Regulator (iLQR) algorithm, with linear time-complexity in the number of time steps. The approach is based on a projection of the control input onto the nullspace of the linearized constraints. We derive a fully constraint-compliant feedforward-feedback control update rule, for which we can solve efficiently with Riccati-style difference equations. We assume that the relative degree of all constraints in the discrete-time system model is equal to one, which often holds for robotics problems employing rigid-body dynamic models. Simulation examples, including a 6 DoF robotic arm, are given to validate and illustrate the performance of the method.
This paper is concerned with the distributed linear quadratic optimal control problem. In particular, we consider a suboptimal version of the distributed optimal control problem for undirected multi-agent networks. Given a multi-agent system with ide
The problem of constrained coverage path planning involves a robot trying to cover maximum area of an environment under some constraints that appear as obstacles in the map. Out of the several coverage path planning methods, we consider augmenting th
The linear-quadratic regulator (LQR) is an efficient control method for linear and linearized systems. Typically, LQR is implemented in minimal coordinates (also called generalized or joint coordinates). However, other coordinates are possible and re
In this paper, we investigate the open-loop and weak closed-loop solvabilities of stochastic linear quadratic (LQ, for short) optimal control problem of Markovian regime switching system. Interestingly, these two solvabilities are equivalent. We firs
This paper is concerned with a backward stochastic linear-quadratic (LQ, for short) optimal control problem with deterministic coefficients. The weighting matrices are allowed to be indefinite, and cross-product terms in the control and state process