ﻻ يوجد ملخص باللغة العربية
Forced oscillation (FO) is a significant concern threating the power system stability. Its mechanisms are mostly studied via linear models. However, FO amplitude is increasing, e.g., Nordic and Western American FOs, which can stimulate power system nonlinearity. Hence, this paper incorporates nonlinearity in FO mechanism analysis. The multi-scale technique is employed in solving the forced oscillation equation to handle the quadratic nonlinearity. The amplitude-frequency characteristic curves and first-order approximate expressions are derived. The frequency deviation and jumping phenomenon caused by nonlinearity are discovered and further analyzed by comparing with linear models. This paper provides a preliminary research for nonlinear FOs of power system, and more characteristics should be further analysis in the near future.
Non-stationary forced oscillations (FOs) have been observed in power system operations. However, most detection methods assume that the frequency of FOs is stationary. In this paper, we present a methodology for the analysis of non-stationary FOs. Fi
We employ a novel data-enabled predictive control (DeePC) algorithm in voltage source converter (VSC) based high-voltage DC (HVDC) stations to perform safe and optimal wide-area control for power system oscillation damping. Conventional optimal wide-
Location of non-stationary forced oscillation (FO) sources can be a challenging task, especially in cases under resonance condition with natural system modes, where the magnitudes of the oscillations could be greater in places far from the source. Th
This experiment demonstrates to engineering students that control system and power system theory are not orthogonal, but highly interrelated. It introduces a real-world power system problem to enhance time domain State Space Modelling (SSM) skills of
This paper presents lessons learned to date during the Coronavirus Disease 2019 (COVID-19) pandemic from the viewpoint of Saskatchewan power system operations. A load estimation approach is developed to identify how the closures affecting businesses,