ﻻ يوجد ملخص باللغة العربية
In bosonic gases at thermal equilibrium, an external quadratic drive can induce a Bose-Einstein condensation described by the Ising transition, as a consequence of the explicitly broken U(1) phase rotation symmetry down to $mathbb{Z}_2$. However, in physical realizations such as exciton-polaritons and nonlinear photonic lattices, thermal equilibrium is lost and the state is rather determined by a balance between losses and external drive. A fundamental question is then how nonequilibrium fluctuations affect this transition. Here, we show that in a two-dimensional driven-dissipative Bose system the Ising phase is suppressed and replaced by a nonequilibrium phase featuring Kardar-Parisi-Zhang (KPZ) physics. Its emergence is rooted in a U(1)-symmetry restoration mechanism enabled by the strong fluctuations in reduced dimensionality. Moreover, we show that the presence of the quadratic drive term enhances the visibility of the KPZ scaling, compared to two-dimensional U(1)-symmetric gases, where it has remained so far elusive.
Recent approximate analytical work has suggested that, at certain values of the external pump, the optical parametric oscillator (OPO) regime of microcavity polaritons may provide a realisation of Kardar-Parisi-Zhang (KPZ) physics in 2D. Here, by sol
The Kardar-Parisi-Zhang (KPZ) universality class describes the coarse-grained behavior of a wealth of classical stochastic models. Surprisingly, it was recently conjectured to also describe spin transport in the one-dimensional quantum Heisenberg mod
Surface growth governed by the Kardar-Parisi-Zhang (KPZ) equation in dimensions higher than two undergoes a roughening transition from smooth to rough phases with increasing the nonlinearity. It is also known that the KPZ equation can be mapped onto
We study the dynamics of vortices in a two-dimensional, non-equilibrium system, described by the compact Kardar-Parisi-Zhang equation, after a sudden quench across the critical region. Our exact numerical solution of the phase-ordering kinetics shows
We study the scaling regimes for the Kardar-Parisi-Zhang equation with noise correlator R(q) ~ (1 + w q^{-2 rho}) in Fourier space, as a function of rho and the spatial dimension d. By means of a stochastic Cole-Hopf transformation, the critical and