ﻻ يوجد ملخص باللغة العربية
Recent approximate analytical work has suggested that, at certain values of the external pump, the optical parametric oscillator (OPO) regime of microcavity polaritons may provide a realisation of Kardar-Parisi-Zhang (KPZ) physics in 2D. Here, by solving the full microscopic model numerically using the truncated Wigner method, we prove that this predicted KPZ phase for OPO is robust against the appearance of vortices or other effects. For those pump strengths, first order spatial correlations perpendicular to the pump fit closely to the stretched exponential form predicted by the KPZ equation. This strongly indicates the viability of observing KPZ behaviour in future polariton OPO experiments.
In bosonic gases at thermal equilibrium, an external quadratic drive can induce a Bose-Einstein condensation described by the Ising transition, as a consequence of the explicitly broken U(1) phase rotation symmetry down to $mathbb{Z}_2$. However, in
The Kardar-Parisi-Zhang (KPZ) universality class describes the coarse-grained behavior of a wealth of classical stochastic models. Surprisingly, it was recently conjectured to also describe spin transport in the one-dimensional quantum Heisenberg mod
We study the dynamics of vortices in a two-dimensional, non-equilibrium system, described by the compact Kardar-Parisi-Zhang equation, after a sudden quench across the critical region. Our exact numerical solution of the phase-ordering kinetics shows
Surface growth governed by the Kardar-Parisi-Zhang (KPZ) equation in dimensions higher than two undergoes a roughening transition from smooth to rough phases with increasing the nonlinearity. It is also known that the KPZ equation can be mapped onto
Circular KPZ interfaces spreading radially in the plane have GUE Tracy-Widom (TW) height distribution (HD) and Airy$_2$ spatial covariance, but what are their statistics if they evolve on the surface of a different background space, such as a bowl, a