ﻻ يوجد ملخص باللغة العربية
The Kardar-Parisi-Zhang (KPZ) universality class describes the coarse-grained behavior of a wealth of classical stochastic models. Surprisingly, it was recently conjectured to also describe spin transport in the one-dimensional quantum Heisenberg model. We test this conjecture by experimentally probing transport in a cold-atom quantum simulator via the relaxation of domain walls in spin chains of up to 50 spins. We find that domain-wall relaxation is indeed governed by the KPZ dynamical exponent $z = 3/2$, and that the occurrence of KPZ scaling requires both integrability and a non-abelian SU(2) symmetry. Finally, we leverage the single-spin-sensitive detection enabled by the quantum-gas microscope to measure a novel observable based on spin-transport statistics, which yields a clear signature of the non-linearity that is a hallmark of KPZ universality.
In bosonic gases at thermal equilibrium, an external quadratic drive can induce a Bose-Einstein condensation described by the Ising transition, as a consequence of the explicitly broken U(1) phase rotation symmetry down to $mathbb{Z}_2$. However, in
Recent approximate analytical work has suggested that, at certain values of the external pump, the optical parametric oscillator (OPO) regime of microcavity polaritons may provide a realisation of Kardar-Parisi-Zhang (KPZ) physics in 2D. Here, by sol
Surface growth governed by the Kardar-Parisi-Zhang (KPZ) equation in dimensions higher than two undergoes a roughening transition from smooth to rough phases with increasing the nonlinearity. It is also known that the KPZ equation can be mapped onto
We study the dynamics of vortices in a two-dimensional, non-equilibrium system, described by the compact Kardar-Parisi-Zhang equation, after a sudden quench across the critical region. Our exact numerical solution of the phase-ordering kinetics shows
Circular KPZ interfaces spreading radially in the plane have GUE Tracy-Widom (TW) height distribution (HD) and Airy$_2$ spatial covariance, but what are their statistics if they evolve on the surface of a different background space, such as a bowl, a