ﻻ يوجد ملخص باللغة العربية
In the late 19th century, Swedish mathematician Lars Edvard Phragm{e}n proposed a load-balancing approach for selecting committees based on approval ballots. We consider three committee voting rules resulting from this approach: two optimization variants -- one minimizing the maximal load and one minimizing the variance of loads -- and a sequential variant. We study Phragm{e}ns methods from an axiomatic point of view, focusing on properties capturing proportional representation. We show that the sequential variant satisfies proportional justified representation, which is a rare property for committee monotonic methods. Moreover, we show that the optimization variants satisfy perfect representation. We also analyze the computational complexity of Phragm{e}ns methods and provide mixed-integer programming based algorithms for computing them.
The goal of multi-winner elections is to choose a fixed-size committee based on voters preferences. An important concern in this setting is representation: large groups of voters with cohesive preferences should be adequately represented by the elect
In this short note, we describe an approval-based committee selection rule that admits a polynomial-time algorithm and satisfies the Extended Justified Representation (EJR) axiom. This rule is based on approximately maximizing the PAV score, by means
We analyse strategic, complete information, sequential voting with ordinal preferences over the alternatives. We consider several voting mechanisms: plurality voting and approval voting with deterministic or uniform tie-breaking rules. We show that s
We investigate a class of weighted voting games for which weights are randomly distributed over the standard probability simplex. We provide close-formed formulae for the expectation and density of the distribution of weight of the $k$-th largest pla
We consider synchronized iterative voting in the Approval Voting system. We give examples with a Condorcet winner where voters apply simple, sincere, consistent strategies but where cycles appear that can prevent the election of the Condorcet winner,