ﻻ يوجد ملخص باللغة العربية
The goal of multi-winner elections is to choose a fixed-size committee based on voters preferences. An important concern in this setting is representation: large groups of voters with cohesive preferences should be adequately represented by the election winners. Recently, Aziz et al. (2015a;2017) proposed two axioms that aim to capture this idea: justified representation (JR) and its strengthening extended justified representation (EJR). In this paper, we extend the work of Aziz et al. in several directions. First, we answer an open question of Aziz et al., by showing that Reweighted Approval Voting satisfies JR for $k=3, 4, 5$, but fails it for $kge 6$. Second, we observe that EJR is incompatible with the Perfect Representation criterion, which is important for many applications of multi-winner voting, and propose a relaxation of EJR, which we call Proportional Justified Representation (PJR). PJR is more demanding than JR, but, unlike EJR, it is compatible with perfect representation, and a committee that provides PJR can be computed in polynomial time if the committee size divides the number of voters. Moreover, just like EJR, PJR can be used to characterize the classic PAV rule in the class of weighted PAV rules. On the other hand, we show that EJR provides stronger guarantees with respect to average voter satisfaction than PJR does.
In the late 19th century, Swedish mathematician Lars Edvard Phragm{e}n proposed a load-balancing approach for selecting committees based on approval ballots. We consider three committee voting rules resulting from this approach: two optimization vari
In this short note, we describe an approval-based committee selection rule that admits a polynomial-time algorithm and satisfies the Extended Justified Representation (EJR) axiom. This rule is based on approximately maximizing the PAV score, by means
We investigate two systems of fully proportional representation suggested by Chamberlin Courant and Monroe. Both systems assign a representative to each voter so that the sum of misrepresentations is minimized. The winner determination problem for bo
We study the complexity of determining a winning committee under the Chamberlin--Courant voting rule when voters preferences are single-crossing on a line, or, more generally, on a median graph (this class of graphs includes, e.g., trees and grids).
In this paper, we consider how to fairly allocate $m$ indivisible chores to a set of $n$ (asymmetric) agents. As exact fairness cannot be guaranteed, motivated by the extensive study of EF1, EFX and PROP1 allocations, we propose and study {em proport