ترغب بنشر مسار تعليمي؟ اضغط هنا

Hints of Gravitational Ergodicity: Berrys Ensemble and the Universality of the Semi-Classical Page Curve

393   0   0.0 ( 0 )
 نشر من قبل Chethan Krishnan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent developments on black holes have shown that a unitarity-compatible Page curve can be obtained from an ensemble-averaged semi-classical approximation. In this paper, we emphasize (1) that this peculiar manifestation of unitarity is not specific to black holes, and (2) that it can emerge from a single realization of an underlying unitary theory. To make things explicit, we consider a hard sphere gas leaking slowly from a small box into a bigger box. This is a quantum chaotic system in which we expect to see the Page curve in the full unitary description, while semi-classically, eigenstates are expected to behave as though they live in Berrys ensemble. We reproduce the unitarity-compatible Page curve of this system, semi-classically. The computation has structural parallels to replica wormholes, relies crucially on ensemble averaging at each epoch, and reveals the interplay between the multiple time-scales in the problem. Working with the ensemble averaged $state$ rather than the entanglement entropy, we can also engineer an information paradox. Our system provides a concrete example in which the ensemble underlying the semi-classical Page curve is an ergodic proxy for a time average, and not an explicit average over many theories. The questions we address here are logically independent of the existence of horizons, so we expect that semi-classical gravity should also be viewed in a similar light.



قيم البحث

اقرأ أيضاً

We consider a gravity theory coupled to matter, where the matter has a higher-dimensional holographic dual. In such a theory, finding quantum extremal surfaces becomes equivalent to finding the RT/HRT surfaces in the higher-dimensional theory. Using this we compute the entropy of Hawking radiation and argue that it follows the Page curve, as suggested by recent computations of the entropy and entanglement wedges for old black holes. The higher-dimensional geometry connects the radiation to the black hole interior in the spirit of ER=EPR. The black hole interior then becomes part of the entanglement wedge of the radiation. Inspired by this, we propose a new rule for computing the entropy of quantum systems entangled with gravitational systems which involves searching for islands in determining the entanglement wedge.
Asymptotic Causal Diamonds (ACDs) are a natural flat space analogue of AdS causal wedges, and it has been argued previously that they may be useful for understanding bulk locality in flat space holography. In this paper, we use ACD-inspired ideas to argue that there exist natural candidates for Quantum Extremal Surfaces (QES) and entanglement wedges in flat space, anchored to the conformal boundary. When there is a holographic screen at finite radius, we can also associate entanglement wedges and entropies to screen sub-regions, with the system naturally coupled to a sink. The screen and the boundary provide two complementary ways of formulating the information paradox. We explain how they are related and show that in both formulations, the flat space entanglement wedge undergoes a phase transition at the Page time in the background of an evaporating Schwarzschild black hole. Our results closely parallel recent observations in AdS, and reproduce the Page curve. That there is a variation of the argument that can be phrased directly in flat space without reliance on AdS, is a strong indication that entanglement wedge phase transitions may be key to the information paradox in flat space as well. Along the way, we give evidence that the entanglement entropy of an ACD is a well-defined, and likely instructive, quantity. We further note that the picture of the sink we present here may have an understanding in terms of sub-matrix deconfinement in a large-$N$ setting.
90 - Takeshi Morita 2019
Recently the bound on the Lyapunov exponent $lambda_L le 2pi T/ hbar$ in thermal quantum systems was conjectured by Maldacena, Shenker, and Stanford. If we naively apply this bound to a system with a fixed Lyapunov exponent $lambda_L$, it might predi ct the existence of the lower bound on temperature $T ge hbar lambda_L/ 2pi $. Particularly, it might mean that chaotic systems cannot be zero temperature quantum mechanically. Even classical dynamical systems, which are deterministic, might exhibit thermal behaviors once we turn on quantum corrections. We elaborate this possibility by investigating semi-classical particle motions near the hyperbolic fixed point and show that indeed quantum corrections may induce energy emission which obeys a Boltzmann distribution. We also argue that this emission is related to acoustic Hawking radiation in quantum fluid. Besides, we discuss when the bound is saturated and show that a particle motion in an inverse harmonic potential and $c=1$ matrix model may saturate the bound although they are integrable.
We present a doubly holographic prescription for computing entanglement entropy on a gravitating brane. It involves a Ryu-Takayanagi surface with a Dirichlet anchoring condition. In braneworld cosmology, a related approach was used previously in arXi v:2007.06551. There, the prescription naturally computed a co-moving entanglement entropy, and was argued to resolve the information paradox for a black hole living in the cosmology. In this paper, we show that the Dirichlet prescription leads to reasonable results, when applied to a recently studied wedge holography set up with a gravitating bath. The nature of the information paradox and its resolution in our Dirichlet problem have a natural understanding in terms of the strength of gravity on the two branes and at the anchoring location. By sliding the anchor to the defect, we demonstrate that the limit where gravity decouples from the anchor is continuous -- in other words, as far as island physics is considered, weak gravity on the anchor is identical to no gravity. The weak and (moderately) strong gravity regions on the brane are separated by a Dirichlet wall. We find an intricate interplay between various extremal surfaces, with an island coming to the rescue whenever there is an information paradox. This is despite the presence of massless gravitons in the spectrum. The overall physics is consistent with the slogan that gravity becomes more holographic, as it gets stronger. Our observations strengthen the case that the conventional Page curve is indeed of significance, when discussing the information paradox in flat space. We work in high enough dimensions so that the graviton is non-trivial, and our results are in line with the previous discussions on gravitating baths in arXiv:2005.02993 and arXiv:2007.06551.
108 - Akash Jain , Pavel Kovtun 2020
We investigate the effects of stochastic interactions on hydrodynamic correlation functions using the Schwinger-Keldysh effective field theory. We identify new stochastic transport coefficients that are invisible in the classical constitutive relatio ns, but nonetheless affect the late-time behaviour of hydrodynamic correlation functions through loop corrections. These results indicate that classical transport coefficients do not provide a universal characterisation of long-distance, late-time correlations even within the framework of fluctuating hydrodynamics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا