ﻻ يوجد ملخص باللغة العربية
We investigate the effects of stochastic interactions on hydrodynamic correlation functions using the Schwinger-Keldysh effective field theory. We identify new stochastic transport coefficients that are invisible in the classical constitutive relations, but nonetheless affect the late-time behaviour of hydrodynamic correlation functions through loop corrections. These results indicate that classical transport coefficients do not provide a universal characterisation of long-distance, late-time correlations even within the framework of fluctuating hydrodynamics.
We write down a Schwinger-Keldysh effective field theory for non-relativistic (Galilean) hydrodynamics. We use the null background construction to covariantly couple Galilean field theories to a set of background sources. In this language, Galilean h
We present a new approach to describe hydrodynamics carrying non-Abelian macroscopic degrees of freedom. Based on the Kaluza-Klein compactification of a higher-dimensional neutral dissipative fluid on a group manifold, we obtain a d=4 colored dissipa
We study a $mathcal PT$-symmetric scalar Euclidean field theory with a complex action, using both theoretical analysis and lattice simulations. This model has a rich phase structure that exhibits pattern formation in the critical region. Analytical r
We outline a general strategy developed for the analysis of critical models, which we apply to obtain a heuristic classification of all universality classes with up to three field-theoretical scalar order parameters in $d=6-epsilon$ dimensions. As ex
We study how universality classes of O(N)-symmetric models depend continuously on the dimension d and the number of field components N. We observe, from a renormalization group perspective, how the implications of the Mermin-Wagner-Hohenberg theorem