ترغب بنشر مسار تعليمي؟ اضغط هنا

Page Curve and the Information Paradox in Flat Space

131   0   0.0 ( 0 )
 نشر من قبل Chethan Krishnan
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Asymptotic Causal Diamonds (ACDs) are a natural flat space analogue of AdS causal wedges, and it has been argued previously that they may be useful for understanding bulk locality in flat space holography. In this paper, we use ACD-inspired ideas to argue that there exist natural candidates for Quantum Extremal Surfaces (QES) and entanglement wedges in flat space, anchored to the conformal boundary. When there is a holographic screen at finite radius, we can also associate entanglement wedges and entropies to screen sub-regions, with the system naturally coupled to a sink. The screen and the boundary provide two complementary ways of formulating the information paradox. We explain how they are related and show that in both formulations, the flat space entanglement wedge undergoes a phase transition at the Page time in the background of an evaporating Schwarzschild black hole. Our results closely parallel recent observations in AdS, and reproduce the Page curve. That there is a variation of the argument that can be phrased directly in flat space without reliance on AdS, is a strong indication that entanglement wedge phase transitions may be key to the information paradox in flat space as well. Along the way, we give evidence that the entanglement entropy of an ACD is a well-defined, and likely instructive, quantity. We further note that the picture of the sink we present here may have an understanding in terms of sub-matrix deconfinement in a large-$N$ setting.



قيم البحث

اقرأ أيضاً

309 - Suvrat Raju 2018
A sharp version of the information paradox involves a seeming violation of the monogamy of entanglement during black hole evaporation. We construct an analogous paradox in empty anti-de Sitter space. In a local quantum field theory, Bell correlations between operators localized in mutually spacelike regions are monogamous. We show, through a controlled calculation, that this property can be violated by an order-1 factor in a theory of gravity. This example demonstrates that what appears to be a violation of the monogamy of entanglement may just be a subtle violation of locality in quantum gravity.
We consider a gravity theory coupled to matter, where the matter has a higher-dimensional holographic dual. In such a theory, finding quantum extremal surfaces becomes equivalent to finding the RT/HRT surfaces in the higher-dimensional theory. Using this we compute the entropy of Hawking radiation and argue that it follows the Page curve, as suggested by recent computations of the entropy and entanglement wedges for old black holes. The higher-dimensional geometry connects the radiation to the black hole interior in the spirit of ER=EPR. The black hole interior then becomes part of the entanglement wedge of the radiation. Inspired by this, we propose a new rule for computing the entropy of quantum systems entangled with gravitational systems which involves searching for islands in determining the entanglement wedge.
Quantum corrections to the entanglement entropy of matter fields interacting with dynamical gravity have proven to be very important in the study of the black hole information problem. We consider a one-particle excited state of a massive scalar fiel d infalling in a pure AdS$_3$ geometry and compute these corrections for bulk subregions anchored on the AdS boundary. In the dual CFT$_2$, the state is given by the insertion of a local primary operator and its evolution thereafter. We calculate the area and bulk entanglement entropy corrections at order $mathcal{O}(N^0)$, both in AdS and its CFT dual. The two calculations match, thus providing a non-trivial check of the FLM formula in a dynamical setting. Further, we observe that the bulk entanglement entropy follows a Page curve. We explain the precise sense in which our setup can be interpreted as a simple model of black hole evaporation and comment on the implications for the information problem.
The information loss paradox is usually stated as an incompatibility between general relativity and quantum mechanics. However, the assumptions leading to the problem are often overlooked and, in fact, a careful inspection of the main hypothesises su ggests a radical reformulation of the problem. Indeed, we present a thought experiment involving a black hole that emits radiation and, independently of the nature of the radiation, we show the existence of an incompatibility between (i) the validity of the laws of general relativity to describe infalling matter far from the Planckian regime, and (ii) the so-called central dogma which states that as seen from an outside observer a black hole behaves like a quantum system whose number of degrees of freedom is proportional to the horizon area. We critically revise the standard arguments in support of the central dogma, and argue that they cannot hold true unless some new physics is invoked even before reaching Planck scales. This suggests that the information loss problem, in its current formulation, is not necessarily related to any loss of information or lack of unitarity. Therefore, in principle, semiclassical general relativity and quantum mechanics can be perfectly compatible before reaching the final stage of the black hole evaporation where, instead, a consistent theory of quantum gravity is needed to make any prediction.
88 - H. Nikolic 2018
By entangling soft massless particles one can create an arbitrarily large amount of entanglement entropy that carries an arbitrarily small amount of energy. Dropping this entropy into the black hole (b.h.) one can increase the b.h. entropy by an amou nt that violates Bekenstein bound or any other reasonable bound, leading to a version of b.h. information paradox that does not involve Hawking radiation. Among many proposed solutions of the standard b.h. information paradox with Hawking radiation, only a few can also resolve this version without the Hawking radiation. The assumption that bo
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا