ﻻ يوجد ملخص باللغة العربية
Whether the number of beta-steps in the lambda-calculus can be taken as a reasonable time cost model (that is, polynomially related to the one of Turing machines) is a delicate problem, which depends on the notion of evaluation strategy. Since the nineties, it is known that weak (that is, out of abstractions) call-by-value evaluation is a reasonable strategy while Levys optimal parallel strategy, which is strong (that is, it reduces everywhere), is not. The strong case turned out to be subtler than the weak one. In 2014 Accattoli and Dal Lago have shown that strong call-by-name is reasonable, by introducing a new form of useful sharing and, later, an abstract machine with an overhead quadratic in the number of beta-steps. Here we show that also strong call-by-value evaluation is reasonable for time, via a new abstract machine realizing useful sharing and having a linear overhead. Moreover, our machine uses a new mix of sharing techniques, adding on top of useful sharing a form of implosive sharing, which on some terms brings an exponential speed-up. We give examples of families that the machine executes in time logarithmic in the number of beta-steps.
This paper explores two topics at once: the use of denotational semantics to bound the evaluation length of functional programs, and the semantics of strong (that is, possibly under abstractions) call-by-value evaluation. About the first, we analyz
We examine the relationship between the algebraic lambda-calculus, a fragment of the differential lambda-calculus and the linear-algebraic lambda-calculus, a candidate lambda-calculus for quantum computation. Both calculi are algebraic: each one is e
In each variant of the lambda-calculus, factorization and normalization are two key-properties that show how results are computed. Instead of proving factorization/normalization for the call-by-name (CbN) and call-by-value (CbV) variants separately,
In this paper we prove that any lambda-term that is strongly normalising for beta-reduction is also strongly normalising for beta,assoc-reduction. assoc is a call-by-value rule that has been used in works by Moggi, Joachimsky, Espirito Santo and othe
We provide a sound and relatively complete Hoare-like proof system for reasoning about partial correctness of recursive procedures in presence of local variables and the call-by-value parameter mechanism, and in which the correctness proofs are linea