ﻻ يوجد ملخص باللغة العربية
In this paper we prove that any lambda-term that is strongly normalising for beta-reduction is also strongly normalising for beta,assoc-reduction. assoc is a call-by-value rule that has been used in works by Moggi, Joachimsky, Espirito Santo and others. The result has often been justified with incomplete or incorrect proofs. Here we give one in full details.
We examine the relationship between the algebraic lambda-calculus, a fragment of the differential lambda-calculus and the linear-algebraic lambda-calculus, a candidate lambda-calculus for quantum computation. Both calculi are algebraic: each one is e
We give a categorical semantics for a call-by-value linear lambda calculus. Such a lambda calculus was used by Selinger and Valiron as the backbone of a functional programming language for quantum computation. One feature of this lambda calculus is i
This paper shows equivalence of sever
Whether the number of beta-steps in the lambda-calculus can be taken as a reasonable time cost model (that is, polynomially related to the one of Turing machines) is a delicate problem, which depends on the notion of evaluation strategy. Since the ni
In this paper we introduce a typed, concurrent $lambda$-calculus with references featuring explicit substitutions for variables and references. Alongside usual safety properties, we recover strong normalization. The proof is based on a reducibility t