ﻻ يوجد ملخص باللغة العربية
In each variant of the lambda-calculus, factorization and normalization are two key-properties that show how results are computed. Instead of proving factorization/normalization for the call-by-name (CbN) and call-by-value (CbV) variants separately, we prove them only once, for the bang calculus (an extension of the lambda-calculus inspired by linear logic and subsuming CbN and CbV), and then we transfer the result via translations, obtaining factorization/normalization for CbN and CbV. The approach is robust: it still holds when extending the calculi with operators and extra rules to model some additional computational features.
We examine the relationship between the algebraic lambda-calculus, a fragment of the differential lambda-calculus and the linear-algebraic lambda-calculus, a candidate lambda-calculus for quantum computation. Both calculi are algebraic: each one is e
Whether the number of beta-steps in the lambda-calculus can be taken as a reasonable time cost model (that is, polynomially related to the one of Turing machines) is a delicate problem, which depends on the notion of evaluation strategy. Since the ni
This paper explores two topics at once: the use of denotational semantics to bound the evaluation length of functional programs, and the semantics of strong (that is, possibly under abstractions) call-by-value evaluation. About the first, we analyz
We provide a sound and relatively complete Hoare-like proof system for reasoning about partial correctness of recursive procedures in presence of local variables and the call-by-value parameter mechanism, and in which the correctness proofs are linea
We present gradual type theory, a logic and type theory for call-by-name gradual typing. We define the central constructions of gradual typing (the dynamic type, type casts and type error) in a novel way, by universal properties relative to new judgm