ﻻ يوجد ملخص باللغة العربية
This work describes the operation of a High Frequency Gravitational Wave detector based on a cryogenic Bulk Acoustic Wave (BAW) cavity and reports observation of rare events during 153 days of operation over two seperate experimental runs (Run 1 and Run 2). In both Run 1 and Run 2 two modes were simultaneously monitored. Across both runs, the 3rd overtone of the fast shear mode (3B) operating at 5.506 MHz was monitored, while in Run 1 the second mode was chosen to be the 5th OT of the slow shear mode (5C) operating at 8.392 MHz. However, in Run 2 the second mode was selected to be closer in frequency to the first mode, and chosen to be the 3rd overtone of the slow shear mode (3C) operating at 4.993 MHz. Two strong events were observed as transients responding to energy deposition within acoustic modes of the cavity. The first event occurred during Run 1 on the 12/05/2019 (UTC), and was observed in the 5.506 MHz mode, while the second mode at 8.392 MHz observed no event. During Run 2, a second event occurred on the 27/11/2019(UTC) and was observed by both modes. Timing of the events were checked against available environmental observations as well as data from other detectors. Various possibilities explaining the origins of the events are discussed.
Monitoring of vibrational eigenmodes of an elastic body excited by gravitational waves was one of the first concepts proposed for the detection of gravitational waves. At laboratory scale, these experiments became known as resonant-bar detectors firs
We investigate the possibility of observing very small amplitude low frequency solar oscillations with the proposed laser interferometer space antenna (LISA). For frequencies $ u$ below $3times 10^{-4} {rm Hz}$ the dominant contribution is from the n
Data from gravitational wave detectors are recorded as time series that include contributions from myriad noise sources in addition to any gravitational wave signals. When regularly sampled data are available, such as for ground based and future spac
Lorentz invariance plays a fundamental role in modern physics. However, tiny violations of the Lorentz invariance may arise in some candidate quantum gravity theories. Prominent signatures of the gravitational Lorentz invariance violation (gLIV) incl
The emergent area of gravitational wave astronomy promises to provide revolutionary discoveries in the areas of astrophysics, cosmology, and fundamental physics. One of the most exciting possibilities is to use gravitational-wave observations to test